Ronivaldo Domingues de Andrade

Capacitacao em GitHub

Rio de Janeiro - RJ
2025

Ronivaldo Domingues de Andrade

Capacitacao em GitHub

Guia Pratico para Capacitacao em GitHub

Rio de Janeiro - RJ
2025

Lista de ilustracoes

Figura 1 — P4gina para a criacio decontanoGitHub 12
Figura2 - Primeira visdo do GitHub depois de criaraconta. 12
Figura3 - Adicionar e verificar e-mail académicono GitHub 15
Figura4 - Pagina do GitHub Student Developer Pack 16
Figura5 - Pégina do GitHub Student Developer Pack 16
Figura 6 — Iniciando a aplicacdo no GitHub Student Developer Pack 17
Figura7 — Verificando se o Winget estd instalado. 19
Figura8 — Buscandoo GitnoWinget. 22
Figura9 - Instalaciodo Git., 22
Figura 10 — Verificando se o Gitestdinstalado. 23
Figura 11 — Instalando o GitHub-CLI. 24
Figura 12 — Verificando se o GitHub-CLI estd instalado. 25
Figura 13 — Efetuando a autenticacdo com o GitHub-CLI - Passo 1. 27
Figura 14 — Efetuando a autenticacdo com o GitHub-CLI - Passo 2. 27
Figura 15 — Efetuando a autenticacdo com o GitHub-CLI - Passo 3. 27
Figura 16 — Efetuando a autenticacdo com o GitHub-CLI - Passo 4. 28
Figura 17 — Efetuando a autenticacdo com o GitHub-CLI - Passo 5. 28

Figura 18 — Configurandoo Git., 30

Lista de tabelas

Tabela 1 — GitHub Free (Pessoal) vs. GitHub Student Developer Pack (Pro) . . 14
Tabela2 — ComandosdoGit 75
Tabela3 — Comandos do GitHub-CLI(gh) 80
Tabela 4 — Padroes de Commits Profissionais 90

Lista de abreviaturas e siglas

Winget Windows Package Manager

GitHub Plataforma de Controle de Versao Distribuido

git Sistema de Controle de Versdo Distribuido

gh GitHub CLI (Command Line Interface)

git-Ifs Sistema de Controle de Versdo Distribuido para Arquivos Grandes
Merge Fusdo de Branches no GitHub

Branch Rama (branch) em um repositério GitHub

Commit Confirmacgao de Modificagdes em um Branch

GitHub Pages Servico de Hospedagem de Pédginas Estéticas

GitHub Actions Plataforma de Automacao de Fluxos de Trabalho

Pull Request (PR) Solicitagdao de Mesclagem de Cédigo

Markdown Linguagem de Marcagdo Leve

README Arquivo de Documentagao do Projeto

.gitignore Arquivo de Configuragdo para Ignorar Arquivos no Git
LICENSE Arquivo de Licenca do Projeto

MIT Licenca MIT -> Massachusetts Institute of Technology License

YML YAML Ain’t Markup Language -> YAML Naio é uma Linguagem

de Marcagdo de Texto, mas sim uma sintaxe para arquivos YAML

GPG GNU Privacy Guard -> Guarda de Privacidade GNU, ferramenta de

criptografia de dados e comunicac¢do segura.

Sumario

Listadeilustragbesttt nnnn 2

Listadetabelas 3

SUMANOt s s s e e e e e e e e e 5
1 INTRODUGAOttt it ettt e 10
2 GITHUB it e e e e e e as 11
2.1 Ooqueé? 11
2.2 Criando seu perfilnoGitHub 11
2.2.1 E-mail académico e GitHub Student Developer Pack 13
2211 Por que usar o GitHub Student Developer Pack? 13
2.2.1.2 GitHub Free vs GitHub Student Developer Pack (GSDP) 13
2213 GitHub Freevs GSDP 14
2.3 Obtendo o GitHub Student Developer Pack 15
3 WINGET ittt e e et e e e ns 18
3.1 oqueé? 18
3.2 Porque usar nessa capacitacao? 18
3.2.1 Instalagdo 18
3.2.1.1 Atualizagdo e 19
4 GITEGITHUB-CLI0...... 21
4.1 Oqueéo@Git?. 21
411 Instalacdodo Git 21
4.2 O que é o GitHub-CLI? 23
4.2.1 Instalacdo do GitHub-CLI 24
4.3 Configuracao do Git e GitHub-CLI 25
4.3.1 Autenticag@o 25

4.3.1.1
4.3.2
4.3.2.1
4.3.3
43.4
4.4
4.41
442

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

6.1

6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

Autenticacdo com o GitHub-CLI 26
Configuracdode usuarioGit 29
Autenticacdo usando PAT (Opcional) 30
Configuracao de Editor Padrao (Opcional) 31
Configurar a branch padréao para 'main’ (Opcional) 31
Comandos Basicos do Git e GitHub-CLI 32
Comandos Basicosdo Git 32
Comandos Bésicos do GitHub-CLI 33
GITLFS e et e e e e e e 34
oqueé? 34
Motivos e Problemas que Resolve 34
Como Funciona 35
Vantagens 35
Limitagbes 36
ExemplodeUso 36
BoasPraticas 36
COMMITS, MERGES E PULL REQUESTS 38
Introducao 38
Commits 38
Oqueéumcommit 38
Boas praticasde commits 38
Fazendo commits passoapasso 39
Editar o ultimo commit / corrigir mensagens 40
Desfazer/alterarstaging 40
Padrées de Commits 41
Merges 42
Tiposdemerge 42
Merge local com merge commit (passo apasso) 42
Rebase (passo a passo) para um histérico linear 43
Resolver conflitos passoapasso 44

Squash e reescrita de commits (passoapasso). 45

6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.6

7.1
7.2
7.3

8.1

8.1.1
8.2

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.3

9.1
9.1.1
9.1.2
9.1.3
9.2
9.2.1

Pull Requests(PR) 45

OqueéumPullRequest 45
Fluxo basico criandoum PR (viaweb) 45
Criar e gerenciar PRs via GitHub CLI (passo a passo) 46
Checklist para revisdo de Pull Request 47
Depois do merge limpeza e sincronizagdo 47
Boas praticas e recomendacoes finais 48
Exemplos rapidos de comandos uteis 48
GITHUB PAGESEGITHUBACTIONS 50
OqueéGitHubPages? 50
O que é GitHub Actions? 50
Integracao entre GitHub Pages e GitHub Actions 51
ASSINATURAS DE COMMITS COM CHAVEGPG 54
oqueé? 54
Importancia das assinaturasGPG 54
Comousar? 54
Passo 1:InstalaroGPG 54
Passo 2: Gerarumachave GPG. 55
Passo 3: Listar chaves e copiaroIDdachave 55
Passo 4: Configurar o Git para usar a chave GPG 56
Passo 5: Adicionar a chave GPG ao GitHub 56
Passo 6: Fazer commits assinados 56
Passo 7: Verificar commits assinados 56
Dicas de segurancae boas praticas 57
EXERCICIOSPRATICOScuuuuuunnn. 58
Gite GitHub-CLI 58
Objetivo 58
Passo a Passo Detalhado 58
Problemas Comuns e Solugbées 58
Criar um repositério no GitHubviaCLI 59

Objetivo 59

9.2.2
9.2.3
9.24
9.24.1
9.24.2
9.2.5
9.2.5.1
9.25.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.5
9.5.1
9.5.2
9.5.3
9.6
9.6.1
9.6.2
9.7
9.7.1
9.7.2
9.8
9.8.1
9.8.2
9.8.3

10

Pré-requisito 59

PassoaPasso 59
README.md 59
Oqueé README.md 59
Como Criar e 60
LICENSE 61
Porqueusar LICENSE 61
Como Adicionar LicencaMIT 61
Clonando um repositériodo GitHub 62
Objetivo 62
PassoaPasso 62
GithubPages 63
Objetivo 63
PassoaPasso 63
Github Actions 64
Objetivo 64
PassoaPasso 64
Usode [skip ci] no GitHub Actions 66
Merge 67
Objetivo 67
PassoaPasso 67
PullRequest 68
Objetivo 68
PassoaPasso 69
Materiaisde Apoio L. 70
Checklist para Cada Exercicio 70
Comandos Uteis paraConsulta 70
Dicas paraBoas Praticas 71
CONCLUSADttt ittt it e eee e 72

REFERENCIAS s it i e e e e e e e e e e e e 73

APENDICES 74

APENDICE A-COMANDOSGIT 75
APENDICE B - COMANDOS GITHUBCLI 80
APENDICE C - PADROES DECOMMITS 90
ANEXOS 94
ANEXO A - LISTADEPRESENCA 95

Listab de dos mebros presentes na capacitacao 95

1 Introducao

O GitHub consolidou-se como uma das principais plataformas de desenvolvimento
colaborativo, sendo amplamente adotado por equipes e desenvolvedores individuais
para o controle de versdo, a gestdo de projetos e a integracdo continua. No entanto,
o uso eficiente de suas ferramentas exige ndo apenas familiaridade com conceitos basi-
cos, mas também o dominio de boas préticas e fluxos de trabalho modernos.

Esta capacitacao foi elaborada com o objetivo de oferecer um guia pratico e acessivel
para o uso do GitHub e de suas tecnologias associadas, como Git, GitHub CLI, Git LFS,
GitHub Pages e GitHub Actions. O material abrange desde a configuragdo inicial do
ambiente até a execu¢do de operacdes avangadas, como a assinatura de commits com
GPG e a automacao de fluxos de trabalho.

Além disso, sdo apresentados exercicios praticos que simulam situacdes reais de de-
senvolvimento, permitindo que os participantes vivenciem todo o ciclo de colaboragdo
em projetos versionados. Com 1isso, espera-se que, ao final do curso, os participantes
estejam aptos a contribuir de forma segura, organizada e profissional em repositérios

locais e remotos, seja em projetos pessoais ou corporativos.

2 GitHub

2.1 O queé?

O GitHub € uma plataforma de hospedagem de cédigo-fonte que utiliza o sistema
de controle de versdo Git. Ele permite que desenvolvedores colaborem em projetos,
compartilhem codigo e gerenciem alteragcdes de forma eficiente. Com o GitHub, € pos-
sivel criar repositorios, realizar pull requests, revisar c6digo e acompanhar o histérico
de alteracdes.

Além disso, o GitHub oferece recursos adicionais, como GitHub Pages para hos-
pedagem de sites estaticos, GitHub Actions para automagao de fluxos de trabalho e
integracdo com diversas ferramentas de desenvolvimento.

O GitHub é amplamente utilizado na industria de software, sendo uma ferramenta
essencial para desenvolvedores, equipes de desenvolvimento e organizagdes que buscam

melhorar a colaboragao e a gestdo de projetos de software.

2.2 Criando seu perfil no GitHub
Para criar uma conta no GitHub, siga os passos abaixo:
1. Acesse o site do GitHub: <https://github.com/>
2. Clique em "Sign up"no canto superior direito.

3. Preencha os campos solicitados, como endereco de e-mail, nome de usudrio e

senha - Figura 1, p.12.

https://github.com/

Create your free account Sign up for GitHub

Figura 1 — P4gina para a cria¢do de conta no GitHub

4. Siga as instrugdes na tela para concluir o processo de criacdo da conta.

5. Ao final vocé verd a tela inicial do GitHub - Figura 2, p.12.

You don't have any public repositories yet.

Figura 2 — Primeira vis@o do GitHub depois de criar a conta

Ap6s criar a conta, vocé poderd acessar o GitHub e comecar a explorar seus recursos.

2.2.1 E-mail académico e GitHub Student Developer Pack

Para usar o GitHub Student Developer Pack e tornar sua conta uma GitHub Pro, vocé
deve associar um e-mail académico a sua conta. Isso pode ser feito nas configuragcdes
da conta, na secao "Emails". Adicionar um e-mail académico pode ajudar a validar sua
identidade como estudante ou profissional da drea de tecnologia.

Com isso o GitHub Student Developer Pack fornece acesso gratuito a diversas ferra-
mentas e servicos para estudantes. Para se inscrever, vocé precisard verificar seu status

de estudante com um e-mail académico valido.

2.2.1.1 Por que usar o GitHub Student Developer Pack?

O GitHub Student Developer Pack oferece uma série de beneficios, incluindo acesso
gratuito a ferramentas de desenvolvimento, servicos de hospedagem e outros recursos
que podem ser extremamente Uteis para estudantes que estdo aprendendo a programar e

desenvolver software.

2.2.1.2 GitHub Free vs GitHub Student Developer Pack (GSDP)

A conta gratuita do GitHub oferece recursos basicos, como repositdrios publicos
e privados, colaboracdo em projetos e integracdo com outras ferramentas. Ja a conta
GitHub Student Developer Pro oferece beneficios adicionais, como acesso a ferramentas

premium, maior capacidade de armazenamento e recursos avangados de colaboracao.

2.2.1.3 GitHub Free vs GSDP

Recurso / Limite

GitHub Free
(Conta Pessoal)

GitHub Student
Developer Pack
(GSDP)

Diferencial Estraté-

gico

Acesso a Reposi-

Ilimitado (Recur-

Ilimitado (Recur-

Governanga de Codigo

torios Privados sos Limitados) sos Pro/Avanca-
dos)

Minutos do | 2,000 minutos 3,000 minutos Maior Resiliéncia de
GitHub Actions CI/CD (+50%)
(Mensal)
Armazenamento | 500 MB 2 GB Suporte a Artefatos e
de Packages Contéineres (+400%)
Horas de Core | 120 horas 180 horas Desenvolvimento em
do Codespaces Nuvem Estendido
(Mensal)
Armazenamento | 15 GB 20 GB Maior Capacidade de
Codespaces Workspace
(Mensal)
Revisores Obriga- | Ndo Disponivel Disponivel (Re- | Enforcamento de Qua-
torios (Private Re- curso Pro) lidade e Compliance
pos)
Suporte Suporte Comuni- | Suporte Comuni- | Base de Suporte

tario tario
Acesso ao | Nao Incluido | Incluido (Geral- | Produtividade e Acele-
GitHub Copilot (Subscri¢ao mente Copilot | racdo por [A

Paga) Pro)

Tabela 1 — GitHub Free (Pessoal) vs. GitHub Student Developer Pack (Pro)

2.3 Obtendo o GitHub Student Developer Pack

1. V4 até as configuracOes da sua conta no GitHub.

2. Na se¢ao "Emails", adicione seu e-mail académico - Figura 3, p.15.

08
N.. CISISU/ENEM 205 [| @ 5GA-UF [IMINECRAFT () CONFIGURAGOES D... (3 proi foiob D finkedins (3 gthub i

@ capacitations-mock (ca

Figura 3 — Adicionar e verificar e-mail académico no GitHub

3. Clique em "Add" para adicionar o e-mail.
4. Verifique o e-mail clicando no link enviado para sua caixa de entrada.

5. Ap6és verificar o e-mail, vocé pode se inscrever no GitHub Student Developer
Pack.

6. Acesse o site do GitHub Student Developer Pack: <https://education.github.com/
pack> - Figura 4, p.16.

https://education.github.com/pack
https://education.github.com/pack

@ privatebrowsing — @ x

© capacitationsmock X GitHub Student Developerpa X |+

o D i =

€« > C @) B e 1 github.comp
Globe | Asmehores... % [Other Bookmaris

[CORONINALDO DOMIN... [CJSISU/ENEM2025 [SHARED ENVIROMENT @ SIGA-UFR @ SIGA-UFRI CIMINECRAFT [CONFIGURAGOES D... [projetc: musasdojob (3 linkedins [githublinks [baixar [gom extensao [vizualizar/baicarel.

GitHub.com

Students ~ Teachers ~ Schools Events | Signin

) Education

GitHub Student Developer Pack

Learn to ship software like a pro. There's no substitute for hands-on experience. But for
most students, real world tools can be cost-prohibitive. That's why we created the
GitHub Student Developer Pack with some of our partners and friends.

Sign up for Student Developer Pack

Love the packe spread the word

Experiences

Discover the best ways to use pack offers with Experiences. Experiences are curated bundles of pack partner products, GitHub tools,
and other resources that are designed for you learn new skills and make the most out of the Student Developer Pack and your journey
in GitHub Education.

& »|

Figura 4 — P4gina do GitHub Student Developer Pack

7. Clique em "Sign up for Student Developer Pack".

8. Issoredirecionara para fazer login na sua conta do GitHub, caso ndo esteja logado

- Figura 5, p.16.

© capactations mock X © Gt Wher

€ > Ca O B github.com/settings/eclucation
Globe | As melhores. » D3 Other Bookmarks

CIRONNALDO DOMIN.. [ISISU/ENEM 2025 [)SHARED ENVIROENT @) SIGA-UFRI @ SIGA-UF) [MINECRAFT () CONFIGURAGOESD... (3 projto: musasdojob [inkedins () githublinks [babxar [gem extensdo 3 vizualizarrbaixar/del

© seunes

@ capacitations-mock (capacitations-

Public profile GitHub Education

Education Benefits Startan application

rd and authentication

Figura 5 — P4gina do GitHub Student Developer Pack

9. Preencha os campos solicitados, incluindo seu e-mail académico - Figura 6, p.17.

o e
€ > C e
I RONNALDO DOMIN... [JSISU/ENEM 2025 [SHARED ENVIROMENT @) SIGA- UFR] @) SIGA- UFR [MINECRAFT [CONFIGURAGOES D... [projeto: musasdojob [linkedins [github lnks -] baar

r D) gemextensio [vizualzarfbabaridel

Li'iJ capacitations-mock
'S’

ation

Education Benefits Application

Figura 6 — Iniciando a aplicac¢do no GitHub Student Developer Pack

10. Anexe um comprovante de matricula ou uma carta da instituicdo de ensino, se

11.

solicitado. (Importante: Use um documento oficial da instituicdo, por expe-
riéncia propria, use a carteirinha de estudante que possui foto, para mim o

processo foi mais rapido ao usar.)

Envie a solicitagcdo e aguarde a aprovacgdo, que pode levar alguns dias.

3 Winget

3.1 Oqueé?

O Winget, ou Windows Package Manager, € uma ferramenta de linha de comando
para Windows que permite instalar, atualizar e gerenciar aplicativos de forma simples
e eficiente. Ele foi desenvolvido pela Microsoft e € uma solucdo nativa para gerencia-
mento de pacotes no Windows.

Para maiores informacdes e entendimento veja a documentacdo em ().

3.2 Porque usar nessa capacitacao?

Para que todos possam acompanhar de maneira eficaz essa capacitacdo, preciso que
todos tenham as ferramentas git e GitHub CLI instaladas em suas maquinas. Para fa-
cilitar esse processo, utilizaremos o Winget, que € o gerenciador de pacotes nativo do
Windows. O Winget € um gerenciador de pacotes para Windows que facilita a instalacao,
atualizacdo e remocao de aplicativos. Com ele, € possivel automatizar a configura¢do

do ambiente de desenvolvimento, economizando tempo e esforco.

3.2.1 Instalacéo

A ferramenta de linha de comando do WinGet s6 tem suporte no
Windows 10 versdo 1809 (build 17763) ou posterior. O WinGet nao
estard disponivel até que vocé tenha feito logon no Windows como
usudrio pela primeira vez, o que fard com que a Microsoft Store re-
gistre o Gerenciador de Pacotes do Windows como parte de um pro-
cesso assincrono. Se vocé tiver feito logon recentemente como usud-
rio pela primeira vez e o0 WinGet ainda ndo estiver disponivel, abra o
PowerShell e insira o seguinte comando para solicitar o registro dele:

Add-AppxPackage —-RegisterByFamilyName —-MainPackage
Microsoft.DesktopAppInstaller_8wekyb3d8bbwe.

1. Verifique se o Winget j4 estd instalado no seu sistema. Abra o Prompt de Co-

mando ou PowerShell e digite

winget —-version

Se o comando retornar uma versao, o Winget j4 estd instalado.

B Windows PowerShell X+ v

PS C:\Users\ronia> winget
v1.11.510
PS C:\Users\ronia>

s R ENG) 1119 AV
i A @ g, D@ g0

Figura 7 — Verificando se o Winget esta instalado.

2. Caso o Winget ndo esteja instalado, vocé pode baixd-lo como parte do aplica-
tivo "App Installer"da Microsoft Store. Acesse a Microsoft Store, procure por
"App Installer"e clique em "Obter"para instalar. Caso enfrente alguma dificul-

dade, acesse a documentacao em ().

3. Apos a instalagdo, reinicie o Prompt de Comando ou PowerShell e verifique no-

vamente a instalacdo com:

winget —--version

O comando deve retornar a versdo do Winget instalada.

3.2.1.1 Atualizagéo

Para garantir que vocé estd utilizando a versdo mais recente do Winget, execute o

comando:

winget upgrade —--all

Este comando atualizard todos os pacotes instalados, incluindo o proprio Winget, se

houver uma atualizacdo disponivel.

4 Git e GitHub-CLI

4.1 O que é o Git?

O Git € um software open source, gratuito e multiplataforma voltado para o versiona-
mento de codigo. Ele oferece um sistema de controle de versao distribuido, amplamente
utilizado no desenvolvimento de software, que permite que multiplos desenvolvedores
trabalhem simultaneamente em um mesmo projeto. O Git rastreia as alteragdes reali-
zadas nos arquivos, possibilitando reverter modificacdes, comparar versoes e gerenciar

ramificagdes (branches) de forma eficiente e segura.

4.1.1 Instalacédo do Git

1. Abra o Prompt de Comando ou PowerShell.

2. Digite o comando:

winget search git

3. Na primeira vez que algum comando do Winget for executado, ele pedira o aceite

dos termos de uso. Ao aceitar, digitando Y ou y.

4. Nesse comando winget search git, serd buscado na base do winget todas
as ocorréncias em que o termo git aparece e serd retornado uma tabela com os
resultados associando o nome do programa, seu id para a instalacdo e algumas

outras informacdes.

B Administrator: Windows Powt X+ v

PS C:\Use: nia> winget search git

The ‘msstore' source requires that you view the following agreements before using.

Terms of Transaction: https://aka.ms/microsoft-store-terms-of-transaction

The source requires the current machine's 2-letter geographic region to be sent to the

Do you agree to all the source agreements terms?
[V] Yes [N] No:
N

Araxis Merge

d

9NLVK2SL2SSP
ONMNKLTSZNKC
9PKETGXITETP
Git.Git
Microsoft.Git
AndreasWascher. RepoZ
Araxis.Merge

Unknot
Unknown
Unknown

backend service to function properly (ex. "US").

Sourcetree Atlassian.Sourcetree
GitKraken t.Gi
Commitly Commitly.Commitly
X Git DuckStudio.ChineseGit winget
Fork - a fast and friendly git client Fork.Fork winget
GLab winget
MinGit winget
BusyBox-based MinGit winget
GitButler winget
Git Extensions nsTeam.GitExtensions winget
GitHub Desktop GitHubDesktop winget
GitHub Desktop Beta .GitHubDesktop.Beta winget
Git LFS .GitLFS winget
GitHub cli winget
git-sizer git-sizer winget
smimesign .smimesign winget
GitTools GitVersion i GitV on 4. winget
Gitleaks Gitleaks.Gitleaks - it winget
jreleaser JReleaser. jreleaser . winget
Oh My Posh JanDeDobbeleer.OhMyPosh 1. winget
lazygit JesseDuffield.lazygit . winget
JetBrains Space JetBrains.Space . a it winget
Gittyup Murmele.Gi 4. winget
GitBlade Pirinel.Gi .00.8. winget
RelaGit Rela.RelaGit .16.9 winget
Tower SaaSGroup.Tower 3. winget
PullWatch ShipDigital.PullWatch 7. g winget
SR> I A6 B Doe ZEN

Figura 8 — Buscando o Git no Winget.

5. Assim que localizar o software que deseja, copie ou memorize seu id, em nosso

caso o id = Git.Git, e digite o comando:

winget install Git.Git

e pressione Enter.
6. Siga as instrucdes na tela para concluir a instalagdo.

7. Aguarde a conclusdo da instalacgao.

xploview xploview.xploview 0B : di.. winget
PS C:\Users\ronia> winget install Git.Git

Found Git [Git.Git] Version 2.51.0.2

This application is licensed to you by its owner.

Microsoft is not responsible for, nor does it grant any licenses to, third-party packages.

Downloading

62.8 MB / 62.8 MB
Successfully verified installer hash
Starting package install...
Successfully installed

Figura 9 — Instalacao do Git.

8. Verifique a instalacdo digitando, em alguns casos o Windows exige que o terminal
seja reiniciado para que as varidveis de ambiente adicionadas com a instalagcdo

sejam carregadas corretamente:

git —-—-version

O comando deve retornar a versdo do Git instalada.

B Windows PowerShell X+ v

Windows PowerShell
Copyright (C) Microsoft Corporation. ALL rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\ronia> git
git version 2.51.0.windows.2
PS C:\Users\ronia>

R A6 o8 Due J3N

Figura 10 — Verificando se o Git estd instalado.

4.2 O que € o GitHub-CLI?

O GitHub-CLI (Command Line Interface) é uma ferramenta de linha de comando
desenvolvida pela GitHub, Inc., que permite interagir com os repositdrios e recursos do
GitHub diretamente pelo terminal, sem a necessidade de acessar a interface web.

Com o GitHub-CLI, € possivel executar operagdes comuns como clonar repositdrios,
criar issues, abrir e revisar pull requests, gerenciar branches, autenticar usudrios, visua-
lizar status de workflows e automatizar fluxos de trabalho, integrando-se perfeitamente
com o Git e com scripts de automacao.

Essa ferramenta € especialmente titil para desenvolvedores que preferem trabalhar
no terminal, proporcionando agilidade, automacdo e maior produtividade no gerencia-
mento de projetos hospedados no GitHub.

4.2.1 Instalacdo do GitHub-CLI

1. Abra o Prompt de Comando ou PowerShell.

2. Agora id = GitHub.cli, e digite o comando:

winget install GitHub.cli

e pressione Enter.

3. Aguarde a conclusido da instalacdo.

O B Administrator: Windows Powe X 4 v

PS C:\Users\ronia> winget install GitHub.cli

Found GitHub CLI [GitHub.cli] Version 2.81.0
This application is licensed to you by its ouner.
Microsoft is not responsible for, nor does it grant any licenses to, third-party packages.
Downloading
17.6 MB / 17.6 MB
Successfully verified installer hash
Starting package install...
Successfully installed
PS C:\Users\ronia>

0 ENG. 12:45PM
E | NG o e DO

Figura 11 — Instalando o GitHub-CLI.

4. Verifique a instalacdo digitando:

gh —--version

O comando deve retornar a versdao do GitHub-CLI instalada.

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\ronia> gh

gh version 2.81.0 (2025-10-01)
https://github.com/cli/cli/releases/tag/v2.81.0
PS C:\Users\ronia>

) ENG 12:46 PM
= % ™ NG o FO®

Figura 12 — Verificando se o GitHub-CLI esta instalado.

4.3 Configuracdo do Git e GitHub-CLI

Ap6s a instalagdo do Git e do GitHub-CLI, € necessdrio realizar algumas configu-
racdes iniciais para garantir que suas informacdes estejam corretas ao fazer commits e

interagir com o GitHub.

4.3.1 Autenticacao

Existem duas formas seguras de autenticacdo para o Git, a primeira envolve a ge-
racdo de um token de acesso pessoal (PAT - Personal Access Token) no GitHub, que
¢ usado como senha ao fazer push ou pull de repositérios remotos. A segunda forma
€ a autenticacdo via SSH, que envolve a criacdo de um par de chaves SSH (ptblica e
privada) e a adi¢do da chave publica a sua conta do GitHub. A autenticacdo via SSH é
geralmente mais segura e conveniente, pois elimina a necessidade de inserir o token ou
senha repetidamente.

OBS.: Desde agosto de 2021, o GitHub nao aceita mais autenticacio via senha
para operacoes Git que envolvem repositorios remotos. Portanto, é obrigatorio o
uso de tokens de acesso pessoal (PAT) ou autenticacio via SSH para essas opera-

coes.

A opc¢do dois € usando o GitHub-CLI, que facilita o processo de autenticagdo.

seguir, estdo 0s passos para configurar a autenticagao usando o GitHub-CLI.

4.3.1.1 Autenticacdo com o GitHub-CLI

Para autenticar-se no GitHub-CLI, execute o comando:
gh auth login

Siga as instrug¢des na tela para concluir o processo de autenticacao.

Figura 13 — Efetuando a autenticacdo com o GitHub-CLI - Passo 1.

B Windows Powershell X 4+ v

PS C:\Users\ronia> gh auth login
Where do you use GitHub? [x

Other

oo o ~a B Dowe 0

Figura 14 — Efetuando a autenticacdo com o GitHub-CLI - Passo 2.

51 Windows PowerShell X |+ v
PS C:\Users\ronia> gh auth login
Where do you use GitHub? n
What is your preferred protocol for Git operations on this host? [
HTTPS

SSH

C R ~a M DoDoe 0N

Figura 15 — Efetuando a autenticacao com o GitHub-CLI - Passo 3.

B Windows PowerShell X+ v

PS C:\Users\ronia> gh auth login
Where do you use GitHub? GitHub.cor
What is your preferred protocol for Git operations on this host?
Authenticate Git with your GitHub credentials? (Y/n) y

2= 0. o o ~ae ™ ooe 20N

Figura 16 — Efetuando a autenticacdo com o GitHub-CLI - Passo 4.

B Windows Powershell X 4+ v

PS C:\Users\ronia> gh auth login
Where do you use GitHub? n
What is your preferred protocol for Git operations on this host? HTTPS
Authenticate Git with your GitHub credentials? Yes
How would you like to authenticate GitHub CLI? [Use a m
g) x
Paste an authentication token

oo o ~a 55 Dawe M

Figura 17 — Efetuando a autenticacdo com o GitHub-CLI - Passo 5.

B Windows Powershell X 4 v

PS C:\Users\ronia> gh auth login
Where do you use GitHub? n
What is your preferred protocol for Git operations on this host?
Authenticate Git with your GitHub credentials? Yes
How would you like to authenticate GitHub CLI?

! First copy your one-time code:
Press Enter to open https://github. gin/device in your browser...

" ~e 85 Dam Lo

Apds o passo 5 na Figura 17, p.28, serd preciso copiar o cédigo gerado abrir o na-
vegador no link fornecido ou se precionar a tecla Enter abrird o link automaticamente.
Nessa tela serd pedido que vocé se autentique e em seguida aparecerd o campo para

digitar o cdigo gerado e algumas permissdes serdo solicitadas.

4.3.2 Configuracao de usuario Git

1. Abra o Prompt de Comando ou PowerShell.

2. Verifique a instalagdo do Git digitando:

git —-—-version

O comando deve retornar a versdo do Git instalada.

3. Configure seu nome de usudrio com o comando:

git config --global user.name "Seu Nome"

Substitua "Seu Nome"pelo nome que vocé€ deseja associar aos seus commits €

pressione Enter.

4. Verifique se o nome foi configurado corretamente com o comando:

git config ——-global user.name

Pressione Enter. O comando deve retornar o nome que vocé configurou.

5. Agora, configure seu e-mail com o comando:

git config —--global user.email "Seu E-mail"

Substitua "Seu E-mail"pelo e-mail que vocé deseja associar aos seus commits e

pressione Enter.

6. Verifique se o e-mail foi configurado corretamente com o comando:

git config —-—-global user.email

Pressione Enter. O comando deve retornar o e-mail que vocé configurou.

> git config user.name "R
git config user.email "ronidon
git config user.name
de Andrade

git config user. email
ronidomingues.ard@gmail.com
PS C:\Users\ronia>

2= 0. o o ~a ? Dow 0N

Figura 18 — Configurando o Git.

4.3.2.1 Autenticacao usando PAT (Opcional)

O uso da autenticagdo com Personal Access Token (PAT) no GitHub oferece maior
seguranga em comparagao a utilizacdo de senhas tradicionais. Isso porque o token pode
ser revogado a qualquer momento diretamente nas configuracdes da conta, além de
possuir um prazo de validade configurdvel no momento da criagdo. Ademais, os PATs
permitem definir escopos especificos de acesso, garantindo que o token tenha apenas as
permissdes necessarias para a operacao desejada. Se vocé optar por usar um Token de

Acesso Pessoal (PAT) para autenticacdo, siga os passos abaixo:
1. Acesse o link <https://github.com/settings/tokens> na sua conta do GitHub.
2. Clique em "Generate new token (classic)".
3. Marque escopos como:

* repo (para acesso completo a repositorios privados e publicos)

» workflows (para gerenciar e visualizar GitHub Actions)

https://github.com/settings/tokens

4. Clique em "Generate token"na parte inferior da pagina e copie o token gerado (ele

nao sera mostrado novamente!).
5. Agora, ao fazer um git push, quando o Git solicitar senha e usuario:

¢ Use seu nome de usuario do GitHub como usudrio.

* Cole o token gerado como senha.

6. Vocé também pode salvar o token gerado no cache de credenciais do Git para

evitar ter que digita-lo toda vez que fizer push ou pull. Para isso, use o comando:

git config —--global credential.helper store

Com isso, na proxima vez que vocé digitar o token, ele serd salvo no arquivo

¢ /.git-credentials‘ e usado automaticamente nas proximas operacoes.

4.3.3 Configuracao de Editor Padrao (Opcional)

Vocé pode configurar o editor de texto padrdao que serd usado para escrever mensa-
gens de commit. Por exemplo, para configurar o Visual Studio Code como editor padrao,

use o comando:
git config ——-global core.editor "code —--wait"

Substitua "code —wait"pelo comando do editor de sua preferéncia.

4.3.4 Configurar a branch padrao para 'main’ (Opcional)

Para configurar a branch padrao para main’, use o comando:
git config ——-global init.defaultBranch main

Isso garantird que novos repositorios criados localmente usem 'main’ como a branch
padrdo. Caso ndo queira definir esse padrao € possivel mudar a branch individualmente

para cada repositério com o comando:

git branch -M main

Obs.: A partir de outubro de 2020, o GitHub alterou o nome da branch padrao
de ""master''para ''main''em novos repositorios. Portanto, é recomendavel usar

"main''como a branch padrao para novos projetos.

4.4 Comandos Basicos do Git e GitHub-CLI

Aqui estdo alguns comandos basicos do Git e do GitHub-CLI que vocé deve conhe-

cer para comecar a trabalhar com repositérios no GitHub.

4.41 Comandos Basicos do Git

e git init: Inicializa um novo repositério Git local.
* git clone <url>: Clona um repositdrio remoto para o seu computador.

* git status: Exibe o status atual do repositorio, mostrando arquivos modificados,

ndo rastreados e prontos para commit.
* git add <arquivo>: Adiciona um arquivo especifico ao estagio para commit.
* git add .: Adiciona todos os arquivos modificados ao estdgio para commit.
* git commit -m ""'mensagem'': Cria um commit com uma mensagem descritiva.
* git push: Envia os commits locais para o repositério remoto.
* git pull: Puxa as alteracdes do repositério remoto para o repositério local.
* git branch: Lista todas as branches no repositorio.
* git checkout <branch>: Muda para a branch especificada.

* git branch -M <branch>: Renomeia a branch atual para o nome especificado

forcando a sobrescrita se a branch especificada ja existir.

* git branch -m <branch>: Renomeia a branch atual para o nome especificado e

falha se a branch especificada ja existir.

* git checkout -b <branch>: Cria uma nova branch e muda para ela.

* git branch -d <branch>: Deleta a branch especificada.
* git remote rm origin: Remove o repositério remoto chamado "origin".

* git remote add origin <url>: Adiciona um repositério remoto com o nome "ori-

gin".
* git remote -v: Exibe os repositdrios remotos configurados.

* git merge <branch>: Mescla a branch especificada na branch atual.

* Veja mais comandos do Git na tabela 2, p.75.

442 Comandos Basicos do GitHub-CLI

* gh auth login: Autentica o usudrio no GitHub-CLI.
* gh repo create <nome-do-repositorio>: Cria um novo repositério no GitHub.

* gh repo clone <nome-do-repositorio>: Clona um repositério do GitHub para o

seu computador.
* gh issue create: Cria uma nova issue no repositorio atual.
* gh pr create: Cria um novo pull request.
* gh pr checkout <numero-do-pr>: Faz checkout de um pull request especifico.
* gh pr merge <numero-do-pr>: Mescla um pull request especifico.
* gh repo view: Exibe informagdes sobre o repositdrio atual.
* gh gist create <arquivo>: Cria um novo gist com o arquivo especificado.

* Veja mais comandos do GitHub-CLI na tabela 3, p.80.

5 Git LFS

5.1 Oqueé?

O Git LFS (Large File Storage) ¢ uma extensao oficial do Git projetada para o ge-
renciamento de arquivos grandes ou binarios que ndo sao tratados de forma eficiente
pelo Git tradicional. Em vez de armazenar o contetido completo desses arquivos no his-
torico do repositério, o Git LFS substitui o arquivo original por um ponteiro leve um
pequeno arquivo de texto contendo informagdes sobre o objeto real, como seu identifica-
dor (hash) e tamanho. O conteddo real € armazenado separadamente, em um servidor
LFS, podendo estar hospedado no préprio provedor Git (como o GitHub, GitLab ou
Bitbucket) ou em um servidor dedicado.

Essa estratégia mantém o repositério mais leve e agil, reduzindo o tempo de clone,
checkout e fetch, além de facilitar o versionamento de arquivos que mudam com frequén-
cia, como imagens, videos, dudios, modelos de aprendizado de maquina, arquivos de

design (. psd), pacotes compactados (. zip), entre outros.

5.1.1 Motivos e Problemas que Resolve

Por padrdo, o Git ndo é otimizado para lidar com arquivos grandes ou bindrios, pois
ele foi projetado para versionar texto, como codigo-fonte. Existem vdrias limitacdes e

problemas ao tentar versionar arquivos grandes diretamente:

* Limite de tamanho: servicos como o GitHub impdem limites de 100 MB por

arquivo, impedindo o envio de arquivos muito grandes via Git comum.

* Histérico inflado: cada nova versdo de um arquivo bindrio € armazenada integral-

mente, sem compressao eficiente, o que faz o repositdrio crescer rapidamente.

* Operacoes lentas: com muitos arquivos grandes no histérico, operagcdes como

git clone,git fetchegit checkout tornam-se mais lentas.

* Dificuldade de merge: arquivos bindrios ndo podem ser mesclados (merge) facil-

mente, aumentando o risco de conflitos.

O Git LFS resolve esses problemas ao:
* Armazenar apenas ponteiros leves no repositorio Git;

e Manter o conteido real em um armazenamento separado, acessivel sob de-
manda;

* Permitir a revogacao ou substituicao de arquivos sem reescrever o histérico;
* Proporcionar uma experiéncia de versionamento transparente, pois os comandos
Git (add, commit, push) continuam funcionando normalmente.

5.1.2 Como Funciona

O Git LFS utiliza um sistema de filtros configurados no Git:

* O filtro clean atua ao adicionar um arquivo rastreado pelo LFS, substituindo seu

contetido real por um ponteiro antes de armazend-lo no repositorio.

* O filtro smudge atua durante o checkout ou clone, baixando automatica-
mente o arquivo real do servidor LFS e substituindo o ponteiro pelo contetido

original no diretdrio de trabalho.

O arquivo versionado no Git contém apenas algo como:

version https://git-1lfs.github.com/spec/vl
oid sha256:3b6fla8a...
size 1258291

Essas informagdes sao suficientes para que o Git LFS localize e baixe o conteido

correto quando necessario.

5.1.3 Vantagens

* Mantém o repositorio leve e rapido;
* Suporta arquivos grandes (acima de 100 MB);

* Permite versionamento de arquivos binérios;

* Integra-se com GitHub, GitLab e Bitbucket;

* Possibilita bloqueio de arquivos (lock) para evitar conflitos.

5.1.4 Limitacbes
* O armazenamento LFS pode ter cotas e custos adicionais em servi¢os remotos;
* Necessita de instalacao e configuracao local (git 1fs install);
* Requer que o servidor remoto suporte LFS;

* Para repositdrios antigos, pode ser necessario migrar o histérico.

5.1.5 Exemplo de Uso

Instala o Git LFS no sistema

git 1lfs install

Define tipos de arquivo que serdo rastreados pelo LFS
git 1fs track "x.zip"
git 1fs track "x.psd"

Adiciona e versiona normalmente
git add .gitattributes
git add arquivo.zip
git commit -m "Adiciona arquivo grande com Git LFS"
git push origin main
5.1.6 Boas Praticas
* Configure o Git LFS antes de adicionar arquivos grandes;
* Use ocomando git 1fs track para definir padrdes de arquivos;

* Verifique o status com git 1fs status;

* Evite rastrear arquivos pequenos em grande quantidade;

¢ Monitore o0 uso de armazenamento e transferéncias.

6 Commits, Merges e Pull Requests

6.1 Introducao

Commits, merges e pull requests sdo elementos centrais no fluxo de trabalho com
Git e plataformas como GitHub. Um commit é uma unidade 16gica de alteragdo no
repositorio; um merge integra mudancas de uma branch em outra; e um pull request
(PR) € uma solicitagdo formal de revisao e integracdo de uma branch normalmente
usada em colaboragdo para revisar cédigo, executar checks autométicos (CI) e registrar

a decisdo de integrar.

6.2 Commits

6.2.1 O que é um commit

Um commit registra o estado do diretdrio de trabalho (os arquivos staged) em um né
do histérico do Git. Cada commit tem um identificador (SHA), metadata (autor, data) e

uma mensagem que descreve a mudanga.

6.2.2 Boas praticas de commits

* Faca commits atdmicos: cada commit deve representar uma unica mudanga 16-

gica.

* Mensagens claras: use assunto imperativo curto (~50 caracteres) + linha em

branco + corpo explicativo se necessario (72 caracteres por linha).
* Inclua referéncia a issues quando relevante (ex.: “Closes #427).
* Evite commitar arquivos gerados (bindrios, dependéncias) use .gitignore.

* Assine commits quando necessario: git commit -S -m "..." (GPQG).

6.2.3 Fazendo commits passo a passo

1. Verificar o estado dos arquivos:

git status

2. Ver as mudancas nao staged:

git diff # diferencas ndo adicionadas ao stage

git diff —--staged # diferencas preparadas para commit

3. Adicionar alteragdes ao stage (todo arquivo ou interativo):

git add caminho/arquivo.txt # adiciona arquivo especifico
git add . # adiciona tudo (cuidado)
git add -p # adiciona parcialmente (patch)

4. Criar o commit com boa mensagem:

git commit -m "Assunto curto em imperativo"
ou para mensagem longa (editor):

git commit

Exemplo de mensagem:

Corrige calculo de juros

Ajusta a férmula de cédlculo para considerar juros compostos
quando o periodo é maior que 12 meses. Testes unitédrios

adicionados para cobrir casos de fronteira.

5. Ver historico resumido:

git log —--oneline —--graph —--decorate —--all

6.2.4 Editar o ultimo commit / corrigir mensagens

alterar o conteldo do ultimo commit

git commit -—--amend

alterar apenas a mensagem do Ultimo

git commit —-—-amend -m "Nova mensagem"

Atencdo: se o commit ja foi enviado ao remoto, evite

equipe ele reescreve o histdrico e exigird push forcado.

6.2.5 Desfazer / alterar staging

git restore —--staged arquivo.txt #

git restore arquivo.txt #

(j& staged)

commit

—amend sem combinar com a

remove do stage, mantém

alteragcdo no working tree

descarta alteracao no

working tree (se ndo commitada)

git reset —--soft HEAD~1

git reset —--mixed HEAD~1

desfaz Ultimo commit, mantendo

mudangas staged

desfaz Gltimo commit, mantendo

mudancas no working tree

git reset —--hard HEAD~1 #

(unstaged)

desfaz Gltimo commit e
descarta mudancas (CUIDADO)

6.2.6 Padroes de Commits

Manter um padrao consistente nas mensagens de commit € fundamental para garan-
tir um histérico de versdes claro, facil de compreender e rastrear. Um bom padrao de
commit permite que outros desenvolvedores entendam rapidamente o que foi alterado,
por que foi alterado e qual impacto a mudanca traz.

Existem diferentes convencdes adotadas por equipes e comunidades. Veja a tabela
4 na pagina 90 para ver padrdes populares.

Acesse também as referencias:

Boas praticas ao escrever commits

(113 (T3

* Use o modo imperativo (ex.: “adiciona®, “corrige®, “remove‘);

¢ Mantenha a linha de assunto com no maximo 50 caracteres;

* Separe titulo e corpo com uma linha em branco;

* Descreva o motivo da mudanca no corpo, ndo apenas o que foi alterado;

* Use referéncias a issues quando aplicavel (ex.: “Closes #123);

* Escreva mensagens em portugués ou inglés, mas mantenha um idioma tnico no

projeto.

Exemplo de commit completo
feat (api) : adiciona endpoint para criacdo de pedidos
Adiciona o endpoint POST /orders para permitir o cadastro

de novos pedidos. Inclui validacdo de campos obrigatdrios

e testes unitdrios. Closes #42.

Vantagens de seguir um padréao

* Histdrico limpo e facil de entender;
* Facilita revisdo de cédigo e auditorias;
* Permite geracdo automdtica de changelogs;

* Ajuda em pipelines de CI/CD e versionamento semantico;

Melhora colaborag@o em equipes e projetos open source.

6.3 Merges

6.3.1 Tipos de merge

Fast-forward Se a branch destino ndo avangou desde que a feature foi criada, o Git

apenas avanga o ponteiro (sem novo commit de merge).

Merge commit Cria um commit de merge que documenta a unido de dois histéricos

(atil para preservar contexto de branch).

Rebase Reaplica commits de uma branch sobre outra, produzindo um histérico linear

(reduz “ruido” dos merges, mas reescreve historico).
6.3.2 Merge local com merge commit (passo a passo)
1. Atualize a branch principal:

git checkout main

git pull origin main

2. Mudar para a branch de feature (se necessdrio):

git checkout feature/minha-feature

git pull origin feature/minha-feature

3. Voltar para a branch de destino e fazer merge:

git checkout main
git merge —--no-ff feature/minha-feature
——no-ff forgca um commit de merge,

preservando histdérico da branch

4. Caso nao haja conflitos, o Git criard o commit de merge automaticamente. Em

caso de conflitos, siga a secao "Resolver conflitos"abaixo.

5. Envie as mudancas para o remoto:

git push origin main

6.3.3 Rebase (passo a passo) para um histérico linear

1. Atualize a base:
git checkout main
git pull origin main
2. Rebase da feature sobre a main:

git checkout feature/minha-feature

git rebase main

3. Resolva conflitos (se aparecerem), use git rebase —continue e, ao final:

force push (com cuidado) apds reescrever histdrico

git push —-—-force-with-lease origin feature/minha-feature

4. Observacao: reescrever historico (rebase + push forcado) requer coordenagdo

com outros colaboradores.

6.3.4 Resolver conflitos passo a passo

1. Ao encontrar conflito durante merge/rebase, o Git mostra arquivos conflitantes:

CONFLICT (content): Merge conflict in caminho/arquivo.txt

2. Abra o arquivo e localize os marcadores:

<<<K<L<LL< HEAD

conteudo na branch atual (main)

conteudo vindo da branch feature/minha-feature

>>>>>>> feature/minha-feature

3. Edite o arquivo para a versdo desejada (manter, combinar ou reescrever o trecho).

4. Marque o conflito como resolvido:

git add caminho/arquivo.txt
se for rebase:
git rebase —-continue

se for merge:

git commit # caso o Git ndo tenha criado o commit automaticame:r

5. Se quiser abortar a operacgao:

git merge —--abort # durante um merge

git rebase —-—-abort # durante um rebase

6.3.5 Squash e reescrita de commits (passo a passo)
1. Interative rebase para combinar commits locais:
git checkout feature/minha-feature

git rebase -i main

2. No editor que abre, marque squash (ou s) nos commits que deseja unir ao

commit anterior. Salve e feche.

3. Apés o rebase, force push com seguranga:

git push —--force-with-lease origin feature/minha-feature

4. Use ~-force-with-lease em vez de —force quando possivel ele evita so-

brescrever pushes alheios.

6.4 Pull Requests (PR)

6.4.1 O que é um Pull Request

Um PR € uma solicitag@o para integrar as mudancas de uma branch em outra (nor-
malmente de uma branch de feature para main ou develop) e serve como ponto cen-

tral para revisao de cédigo, execucdo de pipelines de CI e documentagdo da mudanca.

6.4.2 Fluxo basico criando um PR (via web)

1. Crie uma branch local para a sua feature:

git checkout -b feature/minha-feature

2. Faca commits locais e envie a branch para o remoto:

git push -u origin feature/minha-feature

3. No repositério do GitHub, acesse Pull requests — New pull request.

4. Selecione a branch de origem (feature/minha-feature) e a branch de destino

(ex.: main).

5. Preencha o titulo e a descricdo: explique o porqué e o o que foi alterado. Use

referéncias a issues (ex.: “Closes #123”).
6. Configure revisores, labels, milestone e assignees.
7. Se ainda ndo estd pronta, crie como Draft pull request (rascunho).

8. Aguarde revisao, corrija comentérios fazendo novos commits na mesma branch e

push eles serdo anexados automaticamente ao PR.
9. Quando aprovado, escolha a estratégia de merge (merge commit / squash and

merge / rebase and merge) e realize o merge.

6.4.3 Criar e gerenciar PRs via GitHub CLI (passo a passo)

autentique (uma vez)

gh auth login

depois de push da branch

gh pr create --base main --head feature/minha-feature —--title "Titulo

abrir PR como draft:

gh pr create —--draft —--base main --head feature/minha-feature --fill

listar PRs locails:

gh pr list

fechar ou mesclar via CLI:

gh pr merge <numero-ou-url> —-—-squash —-delete-branch

ou
gh pr merge <numero> —--merge # cria commit de merge
gh pr merge <numero> —--rebase # rebase and merge

6.4.4 Checklist para revisao de Pull Request

* O PR tem um titulo e descri¢do claros (o porqué e o o que);

* Testes automatizados adicionados/atualizados e pipeline CI passando;
» Cddigo segue padroes de lint e estilo;

* Mudancgas pequenas e focadas (um PR por responsabilidade);

* Documentac¢ao e comentdrios quando necessario;

* Evidéncias visuais (screenshots) quando ha alteracoes de UL

6.4.5 Depois do merge limpeza e sincronizagao

atualizar a branch principal local
git checkout main

git pull origin main

remover branch remota (apds merge)

git push origin --delete feature/minha-feature

remover branch local

git branch -d feature/minha-feature

caso a branch ndo possa ser deletada por ndo estar totalmente mesclac

git branch -D feature/minha-feature

Também € util rodar:

git fetch —--prune

para remover referéncias remotas deletadas.

6.5 Boas praticas e recomendacdes finais

* Mantenha PRs pequenos e revisdveis; grandes PRs demoram mais para receber
feedback.

* Automatize checks com CI (testes, lint, analise estatica) e impeca merge enquanto

falharem (branch protection).

* Use ~-force-with-lease quando precisar reescrever histérico; nunca force

sem checar se colegas ndo empurraram commits.

* Documente o fluxo do time (merge strategy preferida ex.: squash para commits

limpos, merge commit para historico preservado).

* Escreva mensagens de commit titeis € mantenha um padrio no time (ex.: Conven-

tional Commits) para facilitar geracdo automatica de changelogs.

6.6 Exemplos rapidos de comandos uteis

ver status e diferencas
git status

git diff

git diff —--staged

histdérico e log

git log —--oneline —--graph —--decorate --all

adicionar parcialmente

git add -p

rebase interativo (Gltimos 3 commits)

git rebase -1 HEAD~3

desfazer mudancas locais (trabalhe com cuidado)
git restore arquivo.txt

git reset ——-hard HEAD

forcar push com seguranca

git push —-—-force-with-lease origin minha-branch

7 GitHub Pages e GitHub Actions

7.1 O que é GitHub Pages?

GitHub Pages € uma ferramenta gratuita oferecida pelo GitHub para hospedagem
de sites estdticos diretamente a partir de um repositério. Essa funcionalidade permite
que desenvolvedores publiquem pdginas web com tecnologias como HTML, CSS e
JavaScript, sem a necessidade de servidores adicionais ou configuracao complexa.

Entre as principais caracteristicas do GitHub Pages, podemos destacar:

* Hospedagem gratuita: todo repositdrio ptiblico pode gerar uma pagina web sem

custos.

* Suporte a dominios personalizados: ¢ possivel usar seu proprio dominio, além

do subdominio padrao do GitHub (username.github. io0).

* Atualizacdo automatica: sempre que vocé faz um push no repositério, o site é

atualizado automaticamente.

* Compatibilidade com geradores de site estatico: ferramentas como Jekyll, Hugo

e Eleventy podem ser integradas facilmente.

Exemplo de uso: um repositério com um arquivo index.html na branch main
pode ser publicado acessando o GitHub Pages nas configuracdes do repositorio, sem

qualquer configuracdo adicional.

7.2 0O que e GitHub Actions?

O GitHub Actions € uma plataforma de automacao que permite criar fluxos de traba-
lho (workflows) para automatizar tarefas de desenvolvimento. Ele funciona diretamente

no GitHub, sem necessidade de servidores externos, e pode ser usado para:

» Testes automatizados: executar testes sempre que houver alteragdes no cédigo.

* Compilacao e build de projetos: gerar executdveis, bibliotecas ou pacotes para

diferentes plataformas.

* Publicacdo automatica: enviar versoes de aplicativos ou paginas web para am-

bientes de produgdo.

* Integracio continua (CI) e entrega continua (CD): garantir que o cédigo envi-

ado para o repositdrio esteja sempre funcional.

Estrutura de um workflow: Um workflow € definido por arquivos YAML dentro

da pasta .github/workflows/ do repositdrio e consiste basicamente em:
* name: nome do workflow.
* on: eventos que disparam o workflow, como push, pull_request, etc.
* jobs: conjunto de tarefas a serem executadas.

* steps: etapas dentro de cada job, que podem incluir instalacdo de dependén-
cias, execug¢do de scripts, testes, builds e deploy.

7.3 Integracao entre GitHub Pages e GitHub Actions

A integracdo entre GitHub Pages e GitHub Actions permite automatizar a publica-

cao de sites sempre que o codigo for atualizado. Esse processo envolve:

1. Configuragcdo do repositdrio para hospedar o site na branch gh-pages ou na

pasta /docs.

2. Criagao de um workflow no GitHub Actions, geralmente disparado pelo evento

push na branch principal (main).
3. Etapas do workflow tipicas:

* Instalacdo de dependéncias: por exemplo, instalar Node.js e pacotes ne-

Cessarios.

* Compilacao do site: gerar os arquivos finais (HTML, CSS, JS).

* Publicacido: enviar os arquivos para a branch ou pasta configurada para
GitHub Pages.

4. Verificacdo: apods o deploy, o site € atualizado automaticamente, podendo ser
acessado pelo dominio configurado.

Exemplo de arquivo de workflow simples (deploy.yml):

name: Deploy GitHub Pages

on:
push:
branches:

— main

jobs:
build:
runs—on: ubuntu-latest
steps:
- uses: actions/checkout@v3
— name: Setup Node. js
uses: actions/setup-node@v3
with:
node-version: ’18’
— name: Install dependencies
run: npm install
- name: Build site
run: npm run build
— name: Deploy to GitHub Pages
uses: peaceiris/actions—-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./dist

Beneficios da integracao:

* Atualizagdo automadtica do site sem interven¢do manual.
* Garantia de que apenas codigo validado e testado seja publicado.

* Possibilidade de incluir etapas adicionais, como otimizacao de imagens, minifica-

cdo de CSS/JS e execugdo de testes automatizados antes do deploy.

8 Assinaturas de Commits com
chave GPG

8.1 O queé?

A assinatura de commits com GPG (GNU Privacy Guard) é um recurso do Git que
permite garantir a autenticidade e a integridade das alteragdes feitas em um repositdrio.
Quando um commit € assinado, outras pessoas podem verificar que aquele commit foi

realmente feito por vocé, evitando alteragcdes fraudulentas ou commits ndo autorizados.

8.1.1 Importéncia das assinaturas GPG

* Seguranca: Confirma que o commit foi feito pelo autor legitimo.
* Integridade: Permite verificar se o commit nao foi alterado apds sua criag@o.

* Transparéncia: Em projetos open source, facilita identificar contribui¢des con-

fiaveis.

8.2 Como usar?

8.2.1 Passo 1: Instalar o GPG

Antes de assinar commits, vocé precisa instalar o GPG no seu sistema.

¢ Linux/Debian:

sudo apt update
sudo apt install gnupg

* Windows: Instale o Gpgdwin (<https://www.gpgdwin.org/>)

e MacOS:

https://www.gpg4win.org/

brew install gnupg

8.2.2 Passo 2: Gerar uma chave GPG

Para criar uma chave GPG pessoal, use o comando:
gpg ——full-generate-key

O terminal fard algumas perguntas:

1. Tipo de chave: selecione RSA and RSA (default).

2. Tamanho da chave: recomendo 4096 bits para maior segurancga.

3. Validade da chave: escolha o periodo de validade ou 0 para sem expiragao.

4. Nome e e-mail: use o mesmo e-mail configuradono Git (git config user.email).

5. Senha: defina uma senha segura para proteger sua chave.

8.2.3 Passo 3: Listar chaves e copiar o ID da chave

Para ver as chaves criadas:
gpg ——list-secret-keys —-—-keyid-format LONG

O resultado tera um formato como:

sec rsa4096/ABCDEF1234567890 2025-01-01 [SC]
Key fingerprint = 1234 5678 9ABC DEF0 1234
5678 9ABC DEF0 1234 5670

uid Seu Nome <seuemail@example.com>

O que voce precisa € do ID da chave, que no exemplo acima é ABCDEF1234567890.

8.2.4 Passo 4: Configurar o Git para usar a chave GPG

Diga ao Git qual chave usar para assinar commits:

git config —-—-global user.signingkey ABCDEF1234567890
git config —--global commit.gpgsign true

8.2.5 Passo 5: Adicionar a chave GPG ao GitHub

Para que o GitHub reconheca seus commits assinados:

1. Copie a chave publica:

gpg ——armor —--export ABCDEF1234567890

2. Entre no GitHub: Settings > SSH and GPG keys > New GPG key

3. Cole a chave publica e salve.

8.2.6 Passo 6: Fazer commits assinados

A partir de agora, todos os commits serdo assinados automaticamente. Vocé também

pode assinar commits individualmente:
git commit -S -m "Mensagem do commit"

No GitHub, os commits assinados aparecerao com a etiqueta Verified.

8.2.7 Passo 7: Verificar commits assinados

Para verificar um commit localmente, use:
git log ——-show-signature

O Git mostrara se o commit foi assinado corretamente e qual chave foi usada.

8.3 Dicas de seguranca e boas praticas

* Proteja sua chave GPG com uma senha forte.
* Faca backup da chave privada em um local seguro.
* Nao compartilhe sua chave privada.

* Rotacione suas chaves periodicamente, se necessario.

9 Exercicios Praticos

Observacao: Todas as atividades devem seguir as boas praticas de commits, merges

e pull requests.

9.1 Git e GitHub-CLI
9.1.1 Obijetivo

Verificar se as ferramentas estdo instaladas corretamente.

9.1.2 Passo a Passo Detalhado

1. Abrir o terminal (Prompt de Comando no Windows, Terminal no Mac/Linux)

2. Verificar se o Git esta instalado:

git —--version

Resultado esperado: Deve aparecer algo como git version 2.xx.x

3. Verificar se o GitHub CLI esta instalado:

gh —-version

Resultado esperado: Deve aparecer algo como gh version 2.xx.x

9.1.3 Problemas Comuns e Solugbes

* Se algum comando ndo for reconhecido, reinstale a ferramenta

* No Windows, talvez seja necessdrio reiniciar o computador apds a instalagao

9.2 Criar um repositério no GitHub via CLI

9.2.1 Objetivo

Criar um repositdrio publico com descricao.

9.2.2 Pré-requisito

Fazer login no GitHub CLI:

gh auth login

9.2.3 Passo a Passo

1. Criar o repositorio:

gh repo create meu-primeiro-repo —--public

—-—description "Meu primeiro repositdério" —--clone

2. Entrar na pasta do repositorio:

cd meu-primeiro-repo

9.24 README.md
9.24.1 O que é README.md

* E a "cara"do seu projeto no GitHub
» Explica o que seu projeto faz, como usar, etc.

* Usa uma linguagem chamada Markdown (por isso o .md)

9.2.4.2 Como Criar

1. Criar o arquivo:

echo "# Meu Primeiro Projeto" >> README.md

2. Adicionar conteudo:

Meu Primeiro Projeto

Este é meu primeiro repositdério no GitHub!

O que este projeto faz?

— Aprender Git e GitHub
— Praticar comandos

— Compartilhar conhecimento

Como usar?

1. Clone este repositédrio
2. Siga as instrugdes

3. Aprenda!

3. Salvar e enviar para o GitHub:

git add README.md
git commit -m "docs (readme): Adiciona README com
a descricgcao do projeto"

git push origin main

Em git push origin main, pode ser colocado a flag —u, ou seja, git

push —-u origin main isso precisara ser feito apenas uma vez os proximos

pushes poderdo apenas se fazer com git push. A flag -u faz com que o git se

torne um colaborador do repositdrio, ou seja, ele ndo precisa mais digitar origin e

main, ele ja sabe que € o repositorio principal.

9.2.5 LICENSE

9.2.5.1

Por que usar LICENSE

* Define como outras pessoas podem usar seu c6digo

* Protege seus direitos autorais

* Torna seu projeto mais profissional

9.2.5.2 Como Adicionar Licenga MIT

1. Criar arquivo LICENSE:

touch LICENSE

2. Adicionar contetido da licenca MIT:

[3S]

(98]

W

MIT License

Copyright (c) [ano] [seu nome]

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated
documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following

conditions:

14 The above copyright notice and this permission notice shall

15 be included in all copies or substantial portions of the
Software.

16

17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND,

18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES

19 OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

21 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

22 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

23 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR

24 OTHER DEALINGS IN THE SOFTWARE.

Listing 9.1 — Licenga MIT

98]

. Substituir [ano] e [seu nome] pelos seus dados

4. Salvar e enviar:

git add LICENSE
git commit -m "chore(licensing) :Adiciona licenca MIT"

git push origin main

9.3 Clonando um repositorio do GitHub

9.3.1 Objetivo

Aprender a baixar repositorios existentes.

9.3.2 Passo a Passo

1. Repositorio alvo: https://github.com/ronidomingues/github-capacitation

2. Copiar a URL do repositorio

3. No terminal, clonar:
git clone https://github.com/ronidomingues/
github-capacitation.git

4. Entrar na pasta criada:

cd github-capacitation

5. Verificar o conteudo:

1ls —-1la

9.4 Github Pages

9.4.1 Objetivo

Publicar um site gratuitamente.

9.4.2 Passo a Passo

1. Criar novo repositorio:

gh repo create meu-site —-public
—-—description "Meu primeiro site" --clone

cd meu-site

2. Copiar os arquivos do jogo (HTML, CSS, JS) para a pasta do repositério

3. Verificar estrutura:

1ls —-1la

4. Adicionar, commitar e enviar:

git add
git commit

git push origin main

5. Ativar GitHub Pages:

* No GitHub, va em Settings Pages
¢ Em Source, selecione main branch

* Clique Save

6. Acessar seu site:

-m "feat (jogo) :

adiciona arquivos do Jjogo"

e URL serd: https://seu-usuario.github.io/meu-site

9.5 Github Actions

9.5.1 Objetivo

Automatizar execugdo de cédigo Python.

9.5.2 Passo a Passo

1. Criar repositorio para o cédigo Python:

gh repo create meu-script-python —--public

——description "Script Python com GitHub Actions" —--clone

cd meu-script-python

2. Copiar o arquivo Python fornecido para o repositério

3. Criar pasta para workflows:

mkdir -p .github/workflows

4. Criar arquivo de workflow:

touch .github/workflows/python.yml

5. Adicionar contetido ao workflow - Prencher o que falta:

Ha um miodelo com fortran 90, disponivel na pasta materials.

name: "Executar script Python e Commitar resultado"

on:
push:
branches: [main]

workflow_dispatch:

jobs:
build-run:

runs—-on: ubuntu-latest

steps:
1 Faz o clone do repositério para a VM Ubuntu;
2 Configura o Python a ser usado pela VM;
—-name: Instalar Python3
uses: actions/setup-python@v5
with:

python-version: ’3.x’

3 Executa o script Python;
4 Cria um commit com o resultado;
-name: Commitar PDFs gerados

run: |

git config user.name "github-actions[bot]"
git config user.email "github-actions
[bot]@users.noreply.github.com"
git add materials/*.pdf
git commit -m "Atualizar PDFs compilados
automaticamente [skip ci]" || echo "Nenhuma
alteracao para commitar"
git push

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

9.5.3 Usode [skip ci] no GitHub Actions

No GitHub Actions, um workflow normalmente é disparado por eventos como:

on:
push:
branches:

- main

Ou seja, cada git push aciona o workflow.

Quando o préprio workflow realiza um commit e push automaticamente (por
exemplo, atualizando arquivos gerados ou listas), isso poderia disparar o work-

flow novamente, criando um loop infinito.

Para evitar esse problema, € possivel incluir no commit uma anotagdo especial:
git commit -m "Atualiza lista automdtica [skip ci]"
O codigo [skip ci] instrui o GitHub Actions (e outros sistemas de CI, como

GitLab CI ou Travis CI) a ignorar este commit, ou seja, nao disparar nenhum

workflow.

Dessa forma, o workflow pode atualizar arquivos ou fazer commits automatica-

mente sem reiniciar seu proprio processo indefinidamente.

Observacao: Além de [skip ci], também € possivel usar [ci skip], que

possui a mesma fungdo.

6. Adicionar, commitar e enviar tudo:

git add
git commit -m "feat:Adiciona script Python e GitHub Actions"

git push origin main

7. Verificar execucio:

* No GitHub, vd em Actions para ver o workflow rodando

9.6 Merge

9.6.1 Objetivo

Aprender a juntar alteragdes de diferentes origens.

9.6.2 Passo a Passo
1. Fazer alteracio REMOTA:
¢ No GitHub, edite o README.md online

¢ Adicione uma linha no final

* Commit a alteracao

2. Fazer alteracao LOCAL:

No seu computador, no mesmo repositdrio
echo "Alteracgdo local" >> argquivo-local.txt

git add arquivo-local.txt

git commit -m "Adiciona arquivo local"

3. Tentar enviar alteracao local:

git push origin main
VAI DAR ERRO! Porque tem alteragdo remota

que vocé ndo tem localmente

4. Fazer merge:

git pull origin main
Isso baixa as alteracgdes remotas e faz merge

com suas alteracdes locais

5. Resolver conflitos (se houver):

» Se Git ndo conseguir juntar automaticamente, ele pedird para resolver ma-

nualmente

* Abra os arquivos com conflitos, resolva e depois:

git add
git commit -m "Resolve conflitos de merge"

git push origin main

9.7 Pull Request

9.7.1 Objetivo

Contribuir para projetos de outras pessoas.

9.7.2 Passo a Passo
1. Fork do repositério original:

* No GitHub, va para o repositorio <https://github.com/ronidomingues/github-capacitation>
* Clique em Fork (canto superior direito)

* Isso cria uma copia em sua conta

2. Clonar SEU fork:

git clone https://github.com/seu-usuario/
repositorio—-forkado.git

cd repositorio-forkado

3. Criar branch para sua feature:

git checkout -b minha-feature

4. Fazer suas alteracoes:

Entre na pasta presences e adicione um arquivo .txt com o seu nome, por
exemplo roni . txt, esse arquivo nao precisa ter nenhum contetido, mas se quei-

ser deixar uma avalia¢@o de tudo até aqui serd 6timo ; —).

echo "Minha avaliacao" >> presences/meu—nome.txt

5. Commit e push:

git add
git commit -m "<tipo> (escopo): <descricgdo>"

git push origin minha-feature

6. Criar Pull Request:

https://github.com/ronidomingues/github-capacitation

No GitHub, v4 para SEU fork

Clique em Pull Request New Pull Request

Selecione: base (repositério original) compare (sua branch)

* Descreva suas alteragoes

Clique Create Pull Request

9.8 Materiais de Apoio

9.8.1 Checklist para Cada Exercicio

[J Comandos executados sem erro

L] Arquivos criados corretamente

(] Commits com mensagens descritivas
[J Push realizado com sucesso

O Resultado verificado no GitHub

9.8.2 Comandos Uteis para Consulta
Status do repositédrio

git status

Ver histdédrico de commits

git log —-oneline

Ver diferencas
git diff

Ver configuracéo

git config —-list

9.8.3 Dicas para Boas Préticas

* Commits frequentes e pequenos

* Mensagens de commit claras e descritivas
* Sempre fazer pull antes de push

* Testar localmente antes de enviar

* Revisar cédigo antes de criar PR

10 Conclusao

Ao longo desta capacitagdo, foram abordados os principais conceitos e ferramentas
que compdem o ecossistema do GitHub, desde a criac@o e configuracdo de reposit6-
rios até a realizacdo de operacdes complexas como merges, rebases, pull requests e a
automacao de pipelines com GitHub Actions.

O dominio dessas habilidades ndo apenas facilita a colaboracdo em projetos de soft-
ware, mas também promove a adocao de boas praticas de desenvolvimento, como com-
mits semanticos, revisao de codigo e integracao continua. A utilizag¢do de recursos como
Git LFS para arquivos grandes e a assinatura de commits com chaves GPG reforca a se-
guranga e a integridade do versionamento.

Por fim, a realizagdo dos exercicios praticos propostos consolida o aprendizado e
prepara o participante para atuar em ambientes reais, contribuindo de forma eficiente
e profissional em projetos individuais e em equipe. Espera-se que este material sirva
como referéncia continua e incentive a ado¢do de um fluxo de trabalho organizado,

colaborativo e alinhado com as melhores préticas do mercado.

Referéncias

Adorno 2021 ADORNO, R. Padrées de Commits (Commit Patterns). 2021.
<https://dev.to/renatoadorno/padroes-de-commits-commit-patterns-41co>. Acesso em:
8 out. 2025.

Iuricode 2023 TURICODE. Padroes de Commits. 2023. <https://github.com/iuricode/
padroes-de-commits>. Repositdrio GitHub. Acesso em: 8 out. 2025.

Microsoft 2025 MICROSOFT. Gerenciador de Pacotes do Windows (winget). 2025.
<https://learn.microsoft.com/pt-br/windows/package-manager/winget/>. Acesso em: 8
out. 2025.

https://dev.to/renatoadorno/padroes-de-commits-commit-patterns-41co
https://github.com/iuricode/padroes-de-commits
https://github.com/iuricode/padroes-de-commits
https://learn.microsoft.com/pt-br/windows/package-manager/winget/

Apéndices

APENDICE A — Comandos Git

Este apéndice apresenta uma referéncia completa dos principais comandos Git orga-

nizados por categoria e funcionalidade.

Comandos Git

Tabela 2 — Comandos do Git

Comando

Categoria

Explicacao Detalhada

git init

Configuracdo/Setup

Transforma o diretério atual em um repo-
sitério Git, criando o diretdrio.git. Pode
ser executado com seguranca em um dire-
tério existente sem sobrescrever configu-

racoes.

git config

Configuracdo/Setup

L& ou define varidveis de configuracdo em
nivel de sistema, global ou local. Essen-
cial para definir a identidade (user.name,

user.email) do autor do commit.

git clone [url]

Configuragdo/Setup

Cria uma copia local de um repositorio re-
moto. Configura automaticamente a refe-

réncia ’origin’ e faz o checkout da branch

principal.

git add [file] Snapshotting Basico Move alteragdes de um arquivo do Wor-
king Tree para o Index (Staging Area),
preparando-o para o proximo commit.

git status Snapshotting Basico Exibe o estado da Working Tree e do In-

dex, listando arquivos modificados, sta-

ged ou ndo rastreados.

Continua na proxima pagina

Continuaciao da Tabela: Comandos do Git

Comando

Categoria

Explicacao Detalhada

git diff

Snapshotting Basico

Mostra as diferencas entre o Working

Tree e o Index (alteracOes ndo staged).

git diff —staged

Snapshotting Basico

Mostra as diferencas entre o Index (Sta-

ging Area) e o ultimo commit (HEAD).

git commit -m | Snapshotting Bésico Salva o conteudo atualmente no Index

"[msg]" como um novo snapshot permanente
(commit) na historia.

git commit | Manipulagdo Histérico | Altera o commit anterior, seja modifi-

—amend cando sua mensagem ou adicionando/re-

movendo arquivos. Isso reescreve o histo-

rico, gerando um novo SHA.

git rm [file] Gerenciamento Ar- | Remove um arquivo do Working Tree e
quivo do Index. O uso de —cached remove
apenas do Index, mantendo o arquivo lo-
cal.
git mv [old][new] | Gerenciamento Ar- | Move ou renomeia um arquivo de forma
quivo rastreada pelo Git.
git clean Gerenciamento Ar- | Remove arquivos ndo rastreados (untrac-
quivo ked files) do Working Tree.
git reset —soft | Manipulacdo Histérico | Move o ponteiro HEAD para o commit,
[hash] mas mantém o Index e o Working Tree

intactos (alteracdes permanecem staged).

git reset —mixed
[hash]

Manipulagdo Histérico

(Padrao) Move o HEAD para o commit e
reseta o Index (desencena arquivos), pre-

servando o Working Tree.

git reset —hard

[hash]

Manipulagdo Histérico

Move o HEAD e reseta o Index e o Wor-
king Tree, descartando todas as mudan-
cas locais desde o hash. Altamente des-

trutivo.

Continua na proxima pagina

Continuaciao da Tabela: Comandos do Git

Comando Categoria Explicacao Detalhada

git branch Branching/Navegacdo | Gerenciamento de branches: lista, cria ou
deleta branches locais.

git checkout Branching/Navegacdao | Comando legado multi-uso. Alterna en-
tre branches ou restaura arquivos antigos/-
commits, podendo resultar em ’detached
HEAD’.

git switch Branching/Navegacdo | Comando moderno focado em alternar
branches. Atualiza a Working Tree e o In-
dex. Utilizado para criar novas branches
de forma segura.

git merge | Integragdo/Merge Integra alteracdes de uma branch na atual,

[branch] criando um “merge commit’ se houver di-
vergéncia. Operagdo ndo-destrutiva.

git rebase [base] | Integracdo/Rebase Move ou reaplica commits para uma nova
base, reescrevendo o histérico para manté-
lo linear. Ideal para branches locais e nao
publicadas.

git rebase -i | Integracdo/Rebase Modo interativo do rebase, permitindo

[base] squash (combinag¢do), edicao ou reordena-
cdo de commits.

git cherry-pick | Integragdao/Portabilidade| Aplica as alteracOes introduzidas por um

[hash] unico commit especifico na branch atual,

criando um novo commit equivalente.

git revert [hash]

Manipulagao Histérico

Cria um novo commit que desfaz as alte-
racdes introduzidas por um commit ante-
rior. Usado para desfazer mudancas em

histérico compartilhado de forma segura.

Continua na proxima pagina

Continuaciao da Tabela: Comandos do Git

Comando Categoria Explicacao Detalhada

git fetch Sincronizacdo Remota | Baixa dados (objetos e refs) de um reposi-
tério remoto para o repositério local, sem
alterar o Working Tree ou Index (opera-
cao segura).

git pull Sincronizacdo Remota | Equivalente a git fetch seguido por uma
integracdo (default: merge). Pode alterar
o estado local e causar conflitos imediata-
mente (operacao menos segura).

git push [re-| Sincroniza¢do Remota | Carrega commits locais para um reposi-

mote][branch] tério remoto. Exige uma operagdo fast-

forward, a menos que —force seja uti-

lizado.

git push —tags

Sincronizacdo Remota

Envia tags locais para o repositério re-

moto.

git remote Sincronizacdo Remota | Gerencia os repositérios remotos rastrea-
dos (e.g., listar, adicionar, remover).

git log Auditoria/Inspecao Exibe o histérico de commits.

git shortlog Auditoria/Inspecao Fornece um resumo conciso do git log,
agrupando commits por autor.

git show Auditoria/Inspecao Exibe informagdes detalhadas sobre um
objeto Git (commit, tag, etc.).

git reflog Auditoria/Recuperagdo | Registra as atualizagdes locais no HEAD
e em outras referéncias, agindo como uma
rede de seguranga para recuperar commits
perdidos apds resets ou rebase.

git tag Marcacao/Utilitarios Cria, lista, deleta ou verifica objetos de

tag, usados para marcar pontos estaticos

(releases) no historico.

Continua na proxima pigina

Continuaciao da Tabela: Comandos do Git

Comando

Categoria

Explicacao Detalhada

git tag -a [name]

Marcagao/Utilitarios

Cria uma tag anotada (com metadados e
mensagem), preferida para releases publi-

cas.

git stash

Utilitarios de Contexto

Salva temporariamente o Working Direc-
tory e o Index (alteracdes nao comitadas)

para permitir a troca de contexto.

git stash pop

Utilitarios de Contexto

Aplica o ultimo stash salvo e o remove da

lista de stashes.

git stash apply

Utilitarios de Contexto

Aplica o tultimo stash salvo, mas o man-

tém na lista.

git submodule

Utilitarios Avangados

Inicializa, atualiza ou inspeciona submo-

dulos (repositérios aninhados).

git worktree

Utilitarios Avangados

Gerencia multiplas Working Trees (chec-
kouts) do mesmo repositério, permitindo
trabalhar em vérias branches simultanea-

mente.

gitk

Utilitarios Avancados

O navegador de repositério Git (ferra-
menta GUI).

scalar

Utilitarios Avancados

Ferramenta projetada para gerenciar repo-
sitérios Git de grande escala (Large Git

Repositories).

git sparse-

checkout

Utilitarios Avancados

Reduz a Working Tree para um subcon-
junto de arquivos rastreados, otimizando

o desempenho em repositérios massivos.

APENDICE B — Comandos GitHub

CLI

Este apéndice apresenta uma referéncia dos principais comandos do GitHub CLI

(gh) organizados por funcionalidade.

Comandos do GitHub-CLI (gh)

Tabela 3 — Comandos do GitHub-CLI (gh)

Comando
Base

Subcomando

Explicacdo Funcional
Detalhada

Exemplo de Sintaxe Chave

gh alias

set

Cria um alias para
um comando gh,
permitindo atalhos
personalizados para

comandos frequentes

gh alias set prc "pr

create"

gh alias

list

Lista todos os alia-
ses configurados no
GitHub CLI

gh alias list

gh alias

delete

Remove um alias previ-

amente configurado

gh alias delete prc

gh auth

login

Autentica 0 usuario no
GitHub via navegador

web ou token

gh auth login

gh auth

logout

Remove a autenticacdo

do usuario atual

gh auth logout

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada
gh auth status Exibe o status de auten- | gh auth status
ticacdo atual e usudrio
conectado
gh auth refresh Renova a autenticacdo | gh auth refresh
para um host especifico |--hostname github.com
gh auth token Exibe o token de auten- | gh auth token
ticacdo atual
gh browse | - Abre o repositorio atual | gh browse
no navegador web
gh browse | --branch Abre uma branch espe- | gh browse —--branch
cifica no navegador feature-branch
gh browse | --commit Abre um commit espe- | gh browse —-—-commit
cifico no navegador abcl23
gh browse | --issue Abre uma issue especi- | gh browse —-issue 42
fica no navegador
gh browse | --pull-request | Abre um pull requestes- | gh browse
pecifico no navegador |--pull-request 15
gh browse | --settings Abre as configuragdes | gh browse --settings
do repositério no nave-
gador
gh browse | --wiki Abre a wiki do reposité- | gh browse —-wiki
rio no navegador
gh codes- | code Abre um codespace no | gh codespace code
pace Visual Studio Code
gh codes-| cp Copia arquivos entre o | gh codespace cp
pace sistema local e um co-| local.txt remote:./

despace

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada
gh codes- | create Cria um novo codes-| gh codespace create
pace pace
gh codes- | delete Remove um codespace | gh codespace delete
pace especifico my-codespace
gh codes- | jupyter Abre um codespace no | gh codespace Jjupyter
pace JupyterLab
gh codes- | list Lista todos os codespa- | gh codespace list
pace ces disponiveis
gh codes- | logs Exibe os logs de um co- | gh codespace logs
pace despace especifico my-codespace
gh codes- | ports Lista as portas encami- | gh codespace ports
pace nhadas de um codes-

pace
gh codes- | ports forward | Encaminha uma porta | gh codespace ports
pace do codespace para o lo- | forward 3000:4000

cal
gh codes- | ports visibi- | Define a visibilidade de | gh codespace ports
pace lity uma porta visibility 3000:public
gh codes- | ssh Conecta-se a um codes- | gh codespace ssh
pace pace via SSH
gh codes- | stop Para um codespace em | gh codespace stop
pace execucao my-codespace
gh gist create Cria um novo gista par- | gh gist create

tir de arquivos ou en- | script.py

trada padrao
gh gist clone Clona um gist especi- | gh gist clone abcl23

fico para o sistema local

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada
gh gist delete Remove um gist especi- | gh gist delete abcl23
fico
gh gist edit Edita um gist existente | gh gist edit abcl23
gh gist list Lista todos os gists do | gh gist list
usuario
gh gist view Visualiza um gist espe- | gh gist view abcl23
cifico no terminal
gh issue create Cria uma nova issue no | gh issue create --title
repositorio "Bug——-body "Descricao"
gh issue list Lista issues do reposi- | gh issue list --state
tério com filtros opcio- | open
nais
gh issue status Mostra o status das is- | gh issue status
sues relevantes para o
usudrio
gh issue close Fecha uma issue especi- | gh issue close 42
fica
gh issue comment Adiciona um comentd- | gh issue comment 42
rio a uma issue --body "Comentério"
gh issue delete Remove uma issue es- | gh issue delete 42
pecifica
gh issue edit Edita uma issue exis-| gh issue edit 42
tente ——title "Novo titulo"
gh issue lock Trava os comentdrios | gh issue lock 42
de uma issue
gh issue reopen Reabre uma issue fe-| gh issue reopen 42

chada

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada
gh issue transfer Transfere uma issue | gh issue transfer 42
para outro repositorio owner/repo
gh issue view Exibe detalhes de uma | gh issue view 42
issue especifica
gh project | copy Copia um projeto para | gh project copy 1
um novo repositério ou |-—draft --target-owner
organizacao novaorg
gh project | create Cria um novo projeto gh project create
—-—title "Meu Projeto"
gh project delete Remove um projeto es- | gh project delete 1
pecifico
gh project edit Edita as propriedades | gh project edit 1
de um projeto -—-title "Novo Titulo"
gh project | field Gerencia campos perso- | gh project field create
nalizados do projeto 1 —--name "Prioridade"
gh project | item Gerencia itens dentro | gh project item add 1
de um projeto ——url <https://github.
com/owner/repo/issues/
1>
gh project | list Lista projetos disponi- | gh project list —--owner
veis owner
gh project | view Visualiza detalhes de | gh project view 1
um projeto especifico
gh pr checks Exibe os status checks | gh pr checks 15
de um pull request
gh pr close Fecha um pull request | gh pr close 15

especifico

Continua na proxima pdgina

https://github.com/owner/repo/issues/1
https://github.com/owner/repo/issues/1
https://github.com/owner/repo/issues/1

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada

gh pr comment Adiciona um comentid- | gh pr comment 15 —-body
rio a um pull request "Comentédrio"
gh pr create Cria um novo pull re-| gh pr create --title
quest "Feature—-body
"Descricao"
gh pr diff Exibe as diferengas in-| gh pr diff 15
troduzidas pelo pull re-
quest
gh pr edit Edita propriedades de | gh pr edit 15 --title
um pull request "Novo Titulo"
gh pr list Lista pull requests do | gh pr list —--state open
repositorio
gh pr merge Mescla um pull request | gh pr merge 15 —--squash
gh pr ready Marca um pull request | gh pr ready 15
como pronto para revi-
sao
gh pr reopen Reabre um pull request | gh pr reopen 15
fechado
gh pr review Adiciona umarevisdaoa | gh pr review 15
um pull request —-—approve
gh pr status Mostra o status dos pull | gh pr status

requests relevantes

gh pr view Exibe detalhes de um | gh pr view 15

pull request especifico

gh pr checkout Faz checkout da branch | gh pr checkout 15

de um pull request

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada
ghrelease | create Cria um novo release gh release create
v1.0.0 —-title "Verséo
1.0.0"
ghrelease | delete Remove um release es- | gh release delete
pecifico v1.0.0
gh release | download Baixa os assets de um | gh release download
release v1.0.0
ghrelease | list Lista todos os releases | gh release list
do repositério
gh release upload Faz upload de assets | gh release upload
para um release v1.0.0 arquivo.zip
ghrelease | view Exibe detalhes de um | gh release view v1.0.0
release especifico
ghrelease | edit Edita propriedades de | gh release edit v1.0.0
um release existente -—title "Novo Titulo"
gh repo archive Arquiva um repositorio | gh repo archive
owner/repo
gh repo clone Clona um repositério | gh repo clone
para o sistema local owner/repo
gh repo create Cria um novo reposité- | gh repo create meu-repo
rio ——public
gh repo delete Remove um repositério | gh repo delete
owner/repo
gh repo edit Edita propriedades de | gh repo edit
um repositorio —-—description "Nova
descricao"
gh repo fork Cria um fork de um re- | gh repo fork owner/repo

positorio

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave

Base Detalhada

gh repo list Lista repositérios do | gh repo list —--1limit 10
usudrio ou organizacao

gh repo rename Renomeia um repositd- | gh repo rename
rio novo-nome

gh repo sync Sincroniza um fork | gh repo sync
com seu repositério
upstream

gh repo view Exibe detalhes de um | gh repo view owner/repo
repositorio

gh repo deploy-key Gerencia chaves de de- | gh repo deploy-key
ploy do repositério add chave.pub --title

"Servidor"

gh repo secret Gerencia secrets do re- | gh repo secret set
positério API_KEY --body "valor"

gh run cancel Cancela uma execu¢do | gh run cancel 123456789
de workflow

gh run delete Remove execugdes de | gh run delete 123456789
workflow

gh run download Baixa artifacts de uma | gh run download
execugao 123456789

gh run list Lista execu¢des de | gh run list
workflows

gh run rerun Reexecuta um work-| gh run rerun 123456789
flow falho

gh run view Exibe detalhes de uma | gh run view 123456789
execucao

gh run watch Monitora uma execu- | gh run watch 123456789

cdo em tempo real

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada
gh search code Busca por cddigo no | gh search code "funcéo
GitHub javascript"
gh search commits Busca por commits gh search commits "fix
bug-—author=user
gh search issues Busca por issues € pull | gh search issues "bug
requests label:bug"
gh search prs Busca especificamente | gh search prs "feature
por pull requests state:open"
gh search
gh search repos Busca por repositérios | repos
"topic:machine-learning"
gh search users Busca por usudrios gh search users "nome
location:Brasil"
gh secret list Lista secrets disponi- | gh secret list
veis
gh secret remove Remove um secret espe- | gh secret remove
cifico API_KEY
gh secret set Define ou atualiza um | gh secret set API_KEY
secret —-—body "wvalor"
gh ssh-key | add Adiciona uma chave | gh ssh-key add
SSH a conta chave.pub --title
"Laptop"
gh ssh-key | list Lista chaves SSH da | gh ssh-key list
conta
gh ssh-key | delete Remove uma chave | gh ssh-key delete 123
SSH
gh work- | disable Desabilita um work-| gh workflow disable "CI
flow flow Tests"

Continua na proxima pdgina

Continuacao da Tabela: Comandos do GitHub-CLI (gh)

Comando | Subcomando | Explicacido Funcional | Exemplo de Sintaxe Chave
Base Detalhada

gh work- | enable Habilita um workflow | gh workflow enable "CI
flow Tests"

gh work-| list Lista workflows dispo- | gh workflow list

flow niveis

gh work- | run Executa um workflow | gh workflow run "CI
flow manualmente Tests"

gh work-| view Exibe detalhes de um | gh workflow view "CI

workflow

Tests"

APENDICE C — Padroes de
Commits

Este apéndice apresenta uma referéncia completa dos principais padroes de commits

organizados por categoria e funcionalidade.

Padroes de Commits

Tabela 4 — Padroes de Commits Profissionais

Tipo Descricao Quando Utilizar Exemplo
feat Introduz uma | Quando adicionar no- | feat: adicionar
nova funcio- | vas capacidades ou | autenticacdo via
nalidade ao | funcionalidades. OAuth?
projeto.
feat (api) :
implementar

endpoint de

usudrios

fix Corrige um bug | Quando resolver pro- | fix: corrigir
ou erro no co6-| blemas ou defeitosno | cdlculo de

digo. sistema. impostos

fix (auth) :
resolver loop

infinito no login

docs Alteracdes na do- | Quando atualizar RE- | docs: atualizar
cumentacao. ADME, comentdrios | guia de
ou documentacao. instalacéao

Continua na proxima pagina

Continuacao da Tabela: Padroes de Commits Profissionais

Tipo Descricao Quando Utilizar Exemplo
docs (api) :
adicionar
exemplos de uso
style Mudangas que | Ao ajustar formata- | style: corrigir
nio afetam o | ¢do, espacos, virgu-| indentacdo no CSS
significado do | las, etc.
codigo.
style: remover
espagos em branco
refactor Reestruturacdo Quando melhorar a | refactor:
do cédigo sem | estrutura sem mudar | extrair método
alterar comporta- | funcionalidades. para reduzir
mento. complexidade
refactor (db) :
otimizar queries
SQL
perf Melhorias de per- | Ao otimizar veloci- | perf: otimizar
formance. dade ou eficiéncia do | algoritmo de
codigo. ordenacéo
perf: reduzir
tempo de
carregamento em
30%
test Adiciona ou mo- | Ao criar novos testes | test: adicionar

difica testes.

ou corrigir existentes.

testes unitérios
para UserService
test:
teste de

corrigir

integracao

Continua na proxima pagina

Continuacao da Tabela: Padroes de Commits Profissionais

Tipo Descricao Quando Utilizar Exemplo
build Mudangas no sis- | Ao atualizar depen- | build: atualizar
tema de build ou | déncias, Webpack, | React para v18
dependéncias. Maven, etc.
build:
configurar
Dockerfile
ci Mudangas na | Ao modificar GitHub | ci: adicionar
configuracdo de | Actions, GitLab CI, | pipeline de
CI/CD. Jenkins, etc. deploy automdtico
ci: configurar
testes E2E no
GitHub Actions
chore Tarefas de manu- | Para atualizacdes de | chore: atualizar
tengdo e rotina. rotina que ndo se en- | versdo do
caixam em outras ca- | package. json
tegorias.
chore: limpar
dependéncias néo
utilizadas
revert Reverte um com- | Quando necessario | revert: "feat:
mit anterior. desfazer ~mudangas | adicionar feature
anteriores. X"
revert: commit
abcl234
hotfix Correcdo critica | Para bugs criticos que | hotfix: corrigir
para producio. exigem correcdo ime- | vulnerabilidade

diata.

de seguranca

Continua na préxima pagina

Continuacao da Tabela: Padroes de Commits Profissionais

Tipo

Descricao

Quando Utilizar

Exemplo

hotfix: resolver
falha no
processamento

de pagamentos

security

Correcdes relaci-
onadas a segu-

ranca.

Ao abordar vulnera-
bilidades ou melhorar

segurancga.

security:
atualizar
bibliotecas com
vulnerabilidades
security:
implementar
sanitizacao de

inputs

nit

Commit inicial

do projeto.

Para o primeiro com-
mit de um novo pro-

jeto.

init:
configuracéao
inicial do
projeto

init: estrutura

base da aplicacao

Anexos

ANEXO A - Lista de Presenca

A.1 Listab de dos mebros presentes na capacitacao

Nome Presente em

Persona Presente 09/10/2025 as 14:36:06

Ronivaldo D. Andrade 09/10/2025 as 14:36:06

	Folha de rosto
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	GitHub
	O que é?
	Criando seu perfil no GitHub
	E-mail acadêmico e GitHub Student Developer Pack
	Por que usar o GitHub Student Developer Pack?
	GitHub Free vs GitHub Student Developer Pack (GSDP)
	GitHub Free vs GSDP

	Obtendo o GitHub Student Developer Pack

	Winget
	O que é?
	Porque usar nessa capacitação?
	Instalação
	Atualização

	Git e GitHub-CLI
	O que é o Git?
	Instalação do Git

	O que é o GitHub-CLI?
	Instalação do GitHub-CLI

	Configuração do Git e GitHub-CLI
	Autenticação
	Autenticação com o GitHub-CLI

	Configuração de usuário Git
	Autenticação usando PAT (Opcional)

	Configuração de Editor Padrão (Opcional)
	Configurar a branch padrão para 'main' (Opcional)

	Comandos Básicos do Git e GitHub-CLI
	Comandos Básicos do Git
	Comandos Básicos do GitHub-CLI

	Git LFS
	O que é?
	Motivos e Problemas que Resolve
	Como Funciona
	Vantagens
	Limitações
	Exemplo de Uso
	Boas Práticas

	Commits, Merges e Pull Requests
	Introdução
	Commits
	O que é um commit
	Boas práticas de commits
	Fazendo commits — passo a passo
	Editar o último commit / corrigir mensagens
	Desfazer / alterar staging
	Padrões de Commits

	Merges
	Tipos de merge
	Merge local com merge commit (passo a passo)
	Rebase (passo a passo) — para um histórico linear
	Resolver conflitos — passo a passo
	Squash e reescrita de commits (passo a passo)

	Pull Requests (PR)
	O que é um Pull Request
	Fluxo básico — criando um PR (via web)
	Criar e gerenciar PRs via GitHub CLI (passo a passo)
	Checklist para revisão de Pull Request
	Depois do merge — limpeza e sincronização

	Boas práticas e recomendações finais
	Exemplos rápidos de comandos úteis

	GitHub Pages e GitHub Actions
	O que é GitHub Pages?
	O que é GitHub Actions?
	Integração entre GitHub Pages e GitHub Actions

	Assinaturas de Commits com chave GPG
	O que é?
	Importância das assinaturas GPG

	Como usar?
	Passo 1: Instalar o GPG
	Passo 2: Gerar uma chave GPG
	Passo 3: Listar chaves e copiar o ID da chave
	Passo 4: Configurar o Git para usar a chave GPG
	Passo 5: Adicionar a chave GPG ao GitHub
	Passo 6: Fazer commits assinados
	Passo 7: Verificar commits assinados

	Dicas de segurança e boas práticas

	Exercícios Práticos
	Git e GitHub-CLI
	Objetivo
	Passo a Passo Detalhado
	Problemas Comuns e Soluções

	Criar um repositório no GitHub via CLI
	Objetivo
	Pré-requisito
	Passo a Passo
	README.md
	O que é README.md
	Como Criar

	LICENSE
	Por que usar LICENSE
	Como Adicionar Licença MIT

	Clonando um repositório do GitHub
	Objetivo
	Passo a Passo

	Github Pages
	Objetivo
	Passo a Passo

	Github Actions
	Objetivo
	Passo a Passo
	Uso de [skip ci] no GitHub Actions

	Merge
	Objetivo
	Passo a Passo

	Pull Request
	Objetivo
	Passo a Passo

	Materiais de Apoio
	Checklist para Cada Exercício
	Comandos Úteis para Consulta
	Dicas para Boas Práticas

	Conclusão
	Referências
	Apêndices
	Comandos Git
	Comandos GitHub CLI
	Padrões de Commits

	Anexos
	Lista de Presença
	Listab de dos mebros presentes na capacitação

