
Ronivaldo Domingues de Andrade

Capacitação em GitHub

Rio de Janeiro - RJ

2025

Ronivaldo Domingues de Andrade

Capacitação em GitHub

Guia Prático para Capacitação em GitHub

Rio de Janeiro - RJ
2025

Lista de ilustrações

Figura 1 – Página para a criação de conta no GitHub 12
Figura 2 – Primeira visão do GitHub depois de criar a conta 12
Figura 3 – Adicionar e verificar e-mail acadêmico no GitHub 15
Figura 4 – Página do GitHub Student Developer Pack 16
Figura 5 – Página do GitHub Student Developer Pack 16
Figura 6 – Iniciando a aplicação no GitHub Student Developer Pack 17
Figura 7 – Verificando se o Winget está instalado. 19
Figura 8 – Buscando o Git no Winget. 22
Figura 9 – Instalação do Git. 22
Figura 10 – Verificando se o Git está instalado. 23
Figura 11 – Instalando o GitHub-CLI. 24
Figura 12 – Verificando se o GitHub-CLI está instalado. 25
Figura 13 – Efetuando a autenticação com o GitHub-CLI - Passo 1. 27
Figura 14 – Efetuando a autenticação com o GitHub-CLI - Passo 2. 27
Figura 15 – Efetuando a autenticação com o GitHub-CLI - Passo 3. 27
Figura 16 – Efetuando a autenticação com o GitHub-CLI - Passo 4. 28
Figura 17 – Efetuando a autenticação com o GitHub-CLI - Passo 5. 28
Figura 18 – Configurando o Git. 30

Lista de tabelas

Tabela 1 – GitHub Free (Pessoal) vs. GitHub Student Developer Pack (Pro) . . 14
Tabela 2 – Comandos do Git . 75
Tabela 3 – Comandos do GitHub-CLI (gh) . 80
Tabela 4 – Padrões de Commits Profissionais 90

Lista de abreviaturas e siglas

Winget Windows Package Manager

GitHub Plataforma de Controle de Versão Distribuído

git Sistema de Controle de Versão Distribuído

gh GitHub CLI (Command Line Interface)

git-lfs Sistema de Controle de Versão Distribuído para Arquivos Grandes

Merge Fusão de Branches no GitHub

Branch Rama (branch) em um repositório GitHub

Commit Confirmação de Modificações em um Branch

GitHub Pages Serviço de Hospedagem de Páginas Estáticas

GitHub Actions Plataforma de Automação de Fluxos de Trabalho

Pull Request (PR) Solicitação de Mesclagem de Código

Markdown Linguagem de Marcação Leve

README Arquivo de Documentação do Projeto

.gitignore Arquivo de Configuração para Ignorar Arquivos no Git

LICENSE Arquivo de Licença do Projeto

MIT Licença MIT -> Massachusetts Institute of Technology License

YML YAML Ain’t Markup Language -> YAML Não é uma Linguagem
de Marcação de Texto, mas sim uma sintaxe para arquivos YAML

GPG GNU Privacy Guard -> Guarda de Privacidade GNU, ferramenta de
criptografia de dados e comunicação segura.

Sumário

Lista de ilustrações . 2

Lista de tabelas . 3

Sumário . 5

1 INTRODUÇÃO . 10

2 GITHUB . 11
2.1 O que é? . 11
2.2 Criando seu perfil no GitHub 11
2.2.1 E-mail acadêmico e GitHub Student Developer Pack 13
2.2.1.1 Por que usar o GitHub Student Developer Pack? 13

2.2.1.2 GitHub Free vs GitHub Student Developer Pack (GSDP) 13

2.2.1.3 GitHub Free vs GSDP . 14

2.3 Obtendo o GitHub Student Developer Pack 15

3 WINGET . 18
3.1 O que é? . 18
3.2 Porque usar nessa capacitação? 18
3.2.1 Instalação . 18
3.2.1.1 Atualização . 19

4 GIT E GITHUB-CLI . 21
4.1 O que é o Git? . 21
4.1.1 Instalação do Git . 21
4.2 O que é o GitHub-CLI? . 23
4.2.1 Instalação do GitHub-CLI . 24
4.3 Configuração do Git e GitHub-CLI 25
4.3.1 Autenticação . 25

4.3.1.1 Autenticação com o GitHub-CLI . 26

4.3.2 Configuração de usuário Git . 29
4.3.2.1 Autenticação usando PAT (Opcional) 30

4.3.3 Configuração de Editor Padrão (Opcional) 31
4.3.4 Configurar a branch padrão para ’main’ (Opcional) 31
4.4 Comandos Básicos do Git e GitHub-CLI 32
4.4.1 Comandos Básicos do Git . 32
4.4.2 Comandos Básicos do GitHub-CLI 33

5 GIT LFS . 34
5.1 O que é? . 34
5.1.1 Motivos e Problemas que Resolve 34
5.1.2 Como Funciona . 35
5.1.3 Vantagens . 35
5.1.4 Limitações . 36
5.1.5 Exemplo de Uso . 36
5.1.6 Boas Práticas . 36

6 COMMITS, MERGES E PULL REQUESTS 38
6.1 Introdução . 38
6.2 Commits . 38
6.2.1 O que é um commit . 38
6.2.2 Boas práticas de commits . 38
6.2.3 Fazendo commits passo a passo 39
6.2.4 Editar o último commit / corrigir mensagens 40
6.2.5 Desfazer / alterar staging . 40
6.2.6 Padrões de Commits . 41
6.3 Merges . 42
6.3.1 Tipos de merge . 42
6.3.2 Merge local com merge commit (passo a passo) 42
6.3.3 Rebase (passo a passo) para um histórico linear 43
6.3.4 Resolver conflitos passo a passo 44
6.3.5 Squash e reescrita de commits (passo a passo) 45

6.4 Pull Requests (PR) . 45
6.4.1 O que é um Pull Request . 45
6.4.2 Fluxo básico criando um PR (via web) 45
6.4.3 Criar e gerenciar PRs via GitHub CLI (passo a passo) 46
6.4.4 Checklist para revisão de Pull Request 47
6.4.5 Depois do merge limpeza e sincronização 47
6.5 Boas práticas e recomendações finais 48
6.6 Exemplos rápidos de comandos úteis 48

7 GITHUB PAGES E GITHUB ACTIONS 50
7.1 O que é GitHub Pages? . 50
7.2 O que é GitHub Actions? . 50
7.3 Integração entre GitHub Pages e GitHub Actions 51

8 ASSINATURAS DE COMMITS COM CHAVE GPG 54
8.1 O que é? . 54
8.1.1 Importância das assinaturas GPG 54
8.2 Como usar? . 54
8.2.1 Passo 1: Instalar o GPG . 54
8.2.2 Passo 2: Gerar uma chave GPG 55
8.2.3 Passo 3: Listar chaves e copiar o ID da chave 55
8.2.4 Passo 4: Configurar o Git para usar a chave GPG 56
8.2.5 Passo 5: Adicionar a chave GPG ao GitHub 56
8.2.6 Passo 6: Fazer commits assinados 56
8.2.7 Passo 7: Verificar commits assinados 56
8.3 Dicas de segurança e boas práticas 57

9 EXERCÍCIOS PRÁTICOS . 58
9.1 Git e GitHub-CLI . 58
9.1.1 Objetivo . 58
9.1.2 Passo a Passo Detalhado . 58
9.1.3 Problemas Comuns e Soluções 58
9.2 Criar um repositório no GitHub via CLI 59
9.2.1 Objetivo . 59

9.2.2 Pré-requisito . 59
9.2.3 Passo a Passo . 59
9.2.4 README.md . 59
9.2.4.1 O que é README.md . 59

9.2.4.2 Como Criar . 60

9.2.5 LICENSE . 61
9.2.5.1 Por que usar LICENSE . 61

9.2.5.2 Como Adicionar Licença MIT . 61

9.3 Clonando um repositório do GitHub 62
9.3.1 Objetivo . 62
9.3.2 Passo a Passo . 62
9.4 Github Pages . 63
9.4.1 Objetivo . 63
9.4.2 Passo a Passo . 63
9.5 Github Actions . 64
9.5.1 Objetivo . 64
9.5.2 Passo a Passo . 64
9.5.3 Uso de [skip ci] no GitHub Actions 66
9.6 Merge . 67
9.6.1 Objetivo . 67
9.6.2 Passo a Passo . 67
9.7 Pull Request . 68
9.7.1 Objetivo . 68
9.7.2 Passo a Passo . 69
9.8 Materiais de Apoio . 70
9.8.1 Checklist para Cada Exercício 70
9.8.2 Comandos Úteis para Consulta 70
9.8.3 Dicas para Boas Práticas . 71

10 CONCLUSÃO . 72

REFERÊNCIAS . 73

APÊNDICES 74

APÊNDICE A – COMANDOS GIT 75

APÊNDICE B – COMANDOS GITHUB CLI 80

APÊNDICE C – PADRÕES DE COMMITS 90

ANEXOS 94

ANEXO A – LISTA DE PRESENÇA 95
A.1 Listab de dos mebros presentes na capacitação 95

1 Introdução

O GitHub consolidou-se como uma das principais plataformas de desenvolvimento
colaborativo, sendo amplamente adotado por equipes e desenvolvedores individuais
para o controle de versão, a gestão de projetos e a integração contínua. No entanto,
o uso eficiente de suas ferramentas exige não apenas familiaridade com conceitos bási-
cos, mas também o domínio de boas práticas e fluxos de trabalho modernos.

Esta capacitação foi elaborada com o objetivo de oferecer um guia prático e acessível
para o uso do GitHub e de suas tecnologias associadas, como Git, GitHub CLI, Git LFS,
GitHub Pages e GitHub Actions. O material abrange desde a configuração inicial do
ambiente até a execução de operações avançadas, como a assinatura de commits com
GPG e a automação de fluxos de trabalho.

Além disso, são apresentados exercícios práticos que simulam situações reais de de-
senvolvimento, permitindo que os participantes vivenciem todo o ciclo de colaboração
em projetos versionados. Com isso, espera-se que, ao final do curso, os participantes
estejam aptos a contribuir de forma segura, organizada e profissional em repositórios
locais e remotos, seja em projetos pessoais ou corporativos.

2 GitHub

2.1 O que é?

O GitHub é uma plataforma de hospedagem de código-fonte que utiliza o sistema
de controle de versão Git. Ele permite que desenvolvedores colaborem em projetos,
compartilhem código e gerenciem alterações de forma eficiente. Com o GitHub, é pos-
sível criar repositórios, realizar pull requests, revisar código e acompanhar o histórico
de alterações.

Além disso, o GitHub oferece recursos adicionais, como GitHub Pages para hos-
pedagem de sites estáticos, GitHub Actions para automação de fluxos de trabalho e
integração com diversas ferramentas de desenvolvimento.

O GitHub é amplamente utilizado na indústria de software, sendo uma ferramenta
essencial para desenvolvedores, equipes de desenvolvimento e organizações que buscam
melhorar a colaboração e a gestão de projetos de software.

2.2 Criando seu perfil no GitHub

Para criar uma conta no GitHub, siga os passos abaixo:

1. Acesse o site do GitHub: <https://github.com/>

2. Clique em "Sign up"no canto superior direito.

3. Preencha os campos solicitados, como endereço de e-mail, nome de usuário e
senha - Figura 1, p.12.

https://github.com/

Figura 1 – Página para a criação de conta no GitHub

4. Siga as instruções na tela para concluir o processo de criação da conta.

5. Ao final você verá a tela inicial do GitHub - Figura 2, p.12.

Figura 2 – Primeira visão do GitHub depois de criar a conta

Após criar a conta, você poderá acessar o GitHub e começar a explorar seus recursos.

2.2.1 E-mail acadêmico e GitHub Student Developer Pack

Para usar o GitHub Student Developer Pack e tornar sua conta uma GitHub Pro, você
deve associar um e-mail acadêmico à sua conta. Isso pode ser feito nas configurações
da conta, na seção "Emails". Adicionar um e-mail acadêmico pode ajudar a validar sua
identidade como estudante ou profissional da área de tecnologia.

Com isso o GitHub Student Developer Pack fornece acesso gratuito a diversas ferra-
mentas e serviços para estudantes. Para se inscrever, você precisará verificar seu status
de estudante com um e-mail acadêmico válido.

2.2.1.1 Por que usar o GitHub Student Developer Pack?

O GitHub Student Developer Pack oferece uma série de benefícios, incluindo acesso
gratuito a ferramentas de desenvolvimento, serviços de hospedagem e outros recursos
que podem ser extremamente úteis para estudantes que estão aprendendo a programar e
desenvolver software.

2.2.1.2 GitHub Free vs GitHub Student Developer Pack (GSDP)

A conta gratuita do GitHub oferece recursos básicos, como repositórios públicos
e privados, colaboração em projetos e integração com outras ferramentas. Já a conta
GitHub Student Developer Pro oferece benefícios adicionais, como acesso a ferramentas
premium, maior capacidade de armazenamento e recursos avançados de colaboração.

2.2.1.3 GitHub Free vs GSDP

Recurso / Limite GitHub Free
(Conta Pessoal)

GitHub Student
Developer Pack
(GSDP)

Diferencial Estraté-
gico

Acesso a Reposi-
tórios Privados

Ilimitado (Recur-
sos Limitados)

Ilimitado (Recur-
sos Pro/Avança-
dos)

Governança de Código

Minutos do
GitHub Actions
(Mensal)

2,000 minutos 3,000 minutos Maior Resiliência de
CI/CD (+50%)

Armazenamento
de Packages

500 MB 2 GB Suporte a Artefatos e
Contêineres (+400%)

Horas de Core
do Codespaces
(Mensal)

120 horas 180 horas Desenvolvimento em
Nuvem Estendido

Armazenamento
Codespaces
(Mensal)

15 GB 20 GB Maior Capacidade de
Workspace

Revisores Obriga-
tórios (Private Re-
pos)

Não Disponível Disponível (Re-
curso Pro)

Enforçamento de Qua-
lidade e Compliance

Suporte Suporte Comuni-
tário

Suporte Comuni-
tário

Base de Suporte

Acesso ao
GitHub Copilot

Não Incluído
(Subscrição
Paga)

Incluído (Geral-
mente Copilot
Pro)

Produtividade e Acele-
ração por IA

Tabela 1 – GitHub Free (Pessoal) vs. GitHub Student Developer Pack (Pro)

2.3 Obtendo o GitHub Student Developer Pack

1. Vá até as configurações da sua conta no GitHub.

2. Na seção "Emails", adicione seu e-mail acadêmico - Figura 3, p.15.

Figura 3 – Adicionar e verificar e-mail acadêmico no GitHub

3. Clique em "Add" para adicionar o e-mail.

4. Verifique o e-mail clicando no link enviado para sua caixa de entrada.

5. Após verificar o e-mail, você pode se inscrever no GitHub Student Developer
Pack.

6. Acesse o site do GitHub Student Developer Pack: <https://education.github.com/
pack> - Figura 4, p.16.

https://education.github.com/pack
https://education.github.com/pack

Figura 4 – Página do GitHub Student Developer Pack

7. Clique em "Sign up for Student Developer Pack".

8. Isso redirecionará para fazer login na sua conta do GitHub, caso não esteja logado
- Figura 5, p.16.

Figura 5 – Página do GitHub Student Developer Pack

9. Preencha os campos solicitados, incluindo seu e-mail acadêmico - Figura 6, p.17.

Figura 6 – Iniciando a aplicação no GitHub Student Developer Pack

10. Anexe um comprovante de matrícula ou uma carta da instituição de ensino, se
solicitado. (Importante: Use um documento oficial da instituição, por expe-
riência própria, use a carteirinha de estudante que possui foto, para mim o
processo foi mais rápido ao usar.)

11. Envie a solicitação e aguarde a aprovação, que pode levar alguns dias.

3 Winget

3.1 O que é?

O Winget, ou Windows Package Manager, é uma ferramenta de linha de comando
para Windows que permite instalar, atualizar e gerenciar aplicativos de forma simples
e eficiente. Ele foi desenvolvido pela Microsoft e é uma solução nativa para gerencia-
mento de pacotes no Windows.

Para maiores informações e entendimento veja a documentação em (Microsoft 2025).

3.2 Porque usar nessa capacitação?

Para que todos possam acompanhar de maneira eficaz essa capacitação, preciso que
todos tenham as ferramentas git e GitHub CLI instaladas em suas máquinas. Para fa-
cilitar esse processo, utilizaremos o Winget, que é o gerenciador de pacotes nativo do
Windows. O Winget é um gerenciador de pacotes para Windows que facilita a instalação,
atualização e remoção de aplicativos. Com ele, é possível automatizar a configuração
do ambiente de desenvolvimento, economizando tempo e esforço.

3.2.1 Instalação

A ferramenta de linha de comando do WinGet só tem suporte no
Windows 10 versão 1809 (build 17763) ou posterior. O WinGet não
estará disponível até que você tenha feito logon no Windows como
usuário pela primeira vez, o que fará com que a Microsoft Store re-
gistre o Gerenciador de Pacotes do Windows como parte de um pro-
cesso assíncrono. Se você tiver feito logon recentemente como usuá-
rio pela primeira vez e o WinGet ainda não estiver disponível, abra o
PowerShell e insira o seguinte comando para solicitar o registro dele:

Add-AppxPackage -RegisterByFamilyName -MainPackage
Microsoft.DesktopAppInstaller_8wekyb3d8bbwe. Microsoft 2025.

1. Verifique se o Winget já está instalado no seu sistema. Abra o Prompt de Co-
mando ou PowerShell e digite

winget --version

Se o comando retornar uma versão, o Winget já está instalado.

Figura 7 – Verificando se o Winget está instalado.

2. Caso o Winget não esteja instalado, você pode baixá-lo como parte do aplica-
tivo "App Installer"da Microsoft Store. Acesse a Microsoft Store, procure por
"App Installer"e clique em "Obter"para instalar. Caso enfrente alguma dificul-
dade, acesse a documentação em (Microsoft 2025).

3. Após a instalação, reinicie o Prompt de Comando ou PowerShell e verifique no-
vamente a instalação com:

winget --version

O comando deve retornar a versão do Winget instalada.

3.2.1.1 Atualização

Para garantir que você está utilizando a versão mais recente do Winget, execute o
comando:

winget upgrade --all

Este comando atualizará todos os pacotes instalados, incluindo o próprio Winget, se
houver uma atualização disponível.

4 Git e GitHub-CLI

4.1 O que é o Git?

O Git é um software open source, gratuito e multiplataforma voltado para o versiona-
mento de código. Ele oferece um sistema de controle de versão distribuído, amplamente
utilizado no desenvolvimento de software, que permite que múltiplos desenvolvedores
trabalhem simultaneamente em um mesmo projeto. O Git rastreia as alterações reali-
zadas nos arquivos, possibilitando reverter modificações, comparar versões e gerenciar
ramificações (branches) de forma eficiente e segura.

4.1.1 Instalação do Git

1. Abra o Prompt de Comando ou PowerShell.

2. Digite o comando:

winget search git

3. Na primeira vez que algum comando do Winget for executado, ele pedirá o aceite
dos termos de uso. Ao aceitar, digitando Y ou y.

4. Nesse comando winget search git, será buscado na base do winget todas
as ocorrências em que o termo git aparece e será retornado uma tabela com os
resultados associando o nome do programa, seu id para a instalação e algumas
outras informações.

Figura 8 – Buscando o Git no Winget.

5. Assim que localizar o software que deseja, copie ou memorize seu id, em nosso
caso o id = Git.Git, e digite o comando:

winget install Git.Git

e pressione Enter.

6. Siga as instruções na tela para concluir a instalação.

7. Aguarde a conclusão da instalação.

Figura 9 – Instalação do Git.

8. Verifique a instalação digitando, em alguns casos o Windows exige que o terminal
seja reiniciado para que as variáveis de ambiente adicionadas com a instalação
sejam carregadas corretamente:

git --version

O comando deve retornar a versão do Git instalada.

Figura 10 – Verificando se o Git está instalado.

4.2 O que é o GitHub-CLI?

O GitHub-CLI (Command Line Interface) é uma ferramenta de linha de comando
desenvolvida pela GitHub, Inc., que permite interagir com os repositórios e recursos do
GitHub diretamente pelo terminal, sem a necessidade de acessar a interface web.

Com o GitHub-CLI, é possível executar operações comuns como clonar repositórios,
criar issues, abrir e revisar pull requests, gerenciar branches, autenticar usuários, visua-
lizar status de workflows e automatizar fluxos de trabalho, integrando-se perfeitamente
com o Git e com scripts de automação.

Essa ferramenta é especialmente útil para desenvolvedores que preferem trabalhar
no terminal, proporcionando agilidade, automação e maior produtividade no gerencia-
mento de projetos hospedados no GitHub.

4.2.1 Instalação do GitHub-CLI

1. Abra o Prompt de Comando ou PowerShell.

2. Agora id = GitHub.cli, e digite o comando:

winget install GitHub.cli

e pressione Enter.

3. Aguarde a conclusão da instalação.

Figura 11 – Instalando o GitHub-CLI.

4. Verifique a instalação digitando:

gh --version

O comando deve retornar a versão do GitHub-CLI instalada.

Figura 12 – Verificando se o GitHub-CLI está instalado.

4.3 Configuração do Git e GitHub-CLI

Após a instalação do Git e do GitHub-CLI, é necessário realizar algumas configu-
rações iniciais para garantir que suas informações estejam corretas ao fazer commits e
interagir com o GitHub.

4.3.1 Autenticação

Existem duas formas seguras de autenticação para o Git, a primeira envolve a ge-
ração de um token de acesso pessoal (PAT - Personal Access Token) no GitHub, que
é usado como senha ao fazer push ou pull de repositórios remotos. A segunda forma
é a autenticação via SSH, que envolve a criação de um par de chaves SSH (pública e
privada) e a adição da chave pública à sua conta do GitHub. A autenticação via SSH é
geralmente mais segura e conveniente, pois elimina a necessidade de inserir o token ou
senha repetidamente.

OBS.: Desde agosto de 2021, o GitHub não aceita mais autenticação via senha
para operações Git que envolvem repositórios remotos. Portanto, é obrigatório o
uso de tokens de acesso pessoal (PAT) ou autenticação via SSH para essas opera-
ções.

A opção dois é usando o GitHub-CLI, que facilita o processo de autenticação. A
seguir, estão os passos para configurar a autenticação usando o GitHub-CLI.

4.3.1.1 Autenticação com o GitHub-CLI

Para autenticar-se no GitHub-CLI, execute o comando:

gh auth login

Siga as instruções na tela para concluir o processo de autenticação.

Figura 13 – Efetuando a autenticação com o GitHub-CLI - Passo 1.

Figura 14 – Efetuando a autenticação com o GitHub-CLI - Passo 2.

Figura 15 – Efetuando a autenticação com o GitHub-CLI - Passo 3.

Figura 16 – Efetuando a autenticação com o GitHub-CLI - Passo 4.

Figura 17 – Efetuando a autenticação com o GitHub-CLI - Passo 5.

Após o passo 5 na Figura 17, p.28, será preciso copiar o código gerado abrir o na-
vegador no link fornecido ou se precionar a tecla Enter abrirá o link automaticamente.
Nessa tela será pedido que você se autentique e em seguida aparecerá o campo para
digitar o código gerado e algumas permissões serão solicitadas.

4.3.2 Configuração de usuário Git

1. Abra o Prompt de Comando ou PowerShell.

2. Verifique a instalação do Git digitando:

git --version

O comando deve retornar a versão do Git instalada.

3. Configure seu nome de usuário com o comando:

git config --global user.name "Seu Nome"

Substitua "Seu Nome"pelo nome que você deseja associar aos seus commits e
pressione Enter.

4. Verifique se o nome foi configurado corretamente com o comando:

git config --global user.name

Pressione Enter. O comando deve retornar o nome que você configurou.

5. Agora, configure seu e-mail com o comando:

git config --global user.email "Seu E-mail"

Substitua "Seu E-mail"pelo e-mail que você deseja associar aos seus commits e
pressione Enter.

6. Verifique se o e-mail foi configurado corretamente com o comando:

git config --global user.email

Pressione Enter. O comando deve retornar o e-mail que você configurou.

Figura 18 – Configurando o Git.

4.3.2.1 Autenticação usando PAT (Opcional)

O uso da autenticação com Personal Access Token (PAT) no GitHub oferece maior
segurança em comparação à utilização de senhas tradicionais. Isso porque o token pode
ser revogado a qualquer momento diretamente nas configurações da conta, além de
possuir um prazo de validade configurável no momento da criação. Ademais, os PATs
permitem definir escopos específicos de acesso, garantindo que o token tenha apenas as
permissões necessárias para a operação desejada. Se você optar por usar um Token de
Acesso Pessoal (PAT) para autenticação, siga os passos abaixo:

1. Acesse o link <https://github.com/settings/tokens> na sua conta do GitHub.

2. Clique em "Generate new token (classic)".

3. Marque escopos como:

• repo (para acesso completo a repositórios privados e públicos)

• workflows (para gerenciar e visualizar GitHub Actions)

https://github.com/settings/tokens

4. Clique em "Generate token"na parte inferior da página e copie o token gerado (ele
não será mostrado novamente!).

5. Agora, ao fazer um git push, quando o Git solicitar senha e usuario:

• Use seu nome de usuário do GitHub como usuário.

• Cole o token gerado como senha.

6. Você também pode salvar o token gerado no cache de credenciais do Git para
evitar ter que digitá-lo toda vez que fizer push ou pull. Para isso, use o comando:

git config --global credential.helper store

Com isso, na próxima vez que você digitar o token, ele será salvo no arquivo
‘ /.git-credentials‘ e usado automaticamente nas próximas operações.

4.3.3 Configuração de Editor Padrão (Opcional)

Você pode configurar o editor de texto padrão que será usado para escrever mensa-
gens de commit. Por exemplo, para configurar o Visual Studio Code como editor padrão,
use o comando:

git config --global core.editor "code --wait"

Substitua "code –wait"pelo comando do editor de sua preferência.

4.3.4 Configurar a branch padrão para ’main’ (Opcional)

Para configurar a branch padrão para ’main’, use o comando:

git config --global init.defaultBranch main

Isso garantirá que novos repositórios criados localmente usem ’main’ como a branch
padrão. Caso não queira definir esse padrão é possivel mudar a branch individualmente
para cada repositório com o comando:

git branch -M main

Obs.: A partir de outubro de 2020, o GitHub alterou o nome da branch padrão
de "master"para "main"em novos repositórios. Portanto, é recomendável usar
"main"como a branch padrão para novos projetos.

4.4 Comandos Básicos do Git e GitHub-CLI

Aqui estão alguns comandos básicos do Git e do GitHub-CLI que você deve conhe-
cer para começar a trabalhar com repositórios no GitHub.

4.4.1 Comandos Básicos do Git

• git init: Inicializa um novo repositório Git local.

• git clone <url>: Clona um repositório remoto para o seu computador.

• git status: Exibe o status atual do repositório, mostrando arquivos modificados,
não rastreados e prontos para commit.

• git add <arquivo>: Adiciona um arquivo específico ao estágio para commit.

• git add .: Adiciona todos os arquivos modificados ao estágio para commit.

• git commit -m "mensagem": Cria um commit com uma mensagem descritiva.

• git push: Envia os commits locais para o repositório remoto.

• git pull: Puxa as alterações do repositório remoto para o repositório local.

• git branch: Lista todas as branches no repositório.

• git checkout <branch>: Muda para a branch especificada.

• git branch -M <branch>: Renomeia a branch atual para o nome especificado
forçando a sobrescrita se a branch especificada já existir.

• git branch -m <branch>: Renomeia a branch atual para o nome especificado e
falha se a branch especificada já existir.

• git checkout -b <branch>: Cria uma nova branch e muda para ela.

• git branch -d <branch>: Deleta a branch especificada.

• git remote rm origin: Remove o repositório remoto chamado "origin".

• git remote add origin <url>: Adiciona um repositório remoto com o nome "ori-
gin".

• git remote -v: Exibe os repositórios remotos configurados.

• git merge <branch>: Mescla a branch especificada na branch atual.

• Veja mais comandos do Git na tabela 2, p.75.

4.4.2 Comandos Básicos do GitHub-CLI

• gh auth login: Autentica o usuário no GitHub-CLI.

• gh repo create <nome-do-repositorio>: Cria um novo repositório no GitHub.

• gh repo clone <nome-do-repositorio>: Clona um repositório do GitHub para o
seu computador.

• gh issue create: Cria uma nova issue no repositório atual.

• gh pr create: Cria um novo pull request.

• gh pr checkout <numero-do-pr>: Faz checkout de um pull request específico.

• gh pr merge <numero-do-pr>: Mescla um pull request específico.

• gh repo view: Exibe informações sobre o repositório atual.

• gh gist create <arquivo>: Cria um novo gist com o arquivo especificado.

• Veja mais comandos do GitHub-CLI na tabela 3, p.80.

5 Git LFS

5.1 O que é?

O Git LFS (Large File Storage) é uma extensão oficial do Git projetada para o ge-
renciamento de arquivos grandes ou binários que não são tratados de forma eficiente
pelo Git tradicional. Em vez de armazenar o conteúdo completo desses arquivos no his-
tórico do repositório, o Git LFS substitui o arquivo original por um ponteiro leve um
pequeno arquivo de texto contendo informações sobre o objeto real, como seu identifica-
dor (hash) e tamanho. O conteúdo real é armazenado separadamente, em um servidor
LFS, podendo estar hospedado no próprio provedor Git (como o GitHub, GitLab ou
Bitbucket) ou em um servidor dedicado.

Essa estratégia mantém o repositório mais leve e ágil, reduzindo o tempo de clone,
checkout e fetch, além de facilitar o versionamento de arquivos que mudam com frequên-
cia, como imagens, vídeos, áudios, modelos de aprendizado de máquina, arquivos de
design (.psd), pacotes compactados (.zip), entre outros.

5.1.1 Motivos e Problemas que Resolve

Por padrão, o Git não é otimizado para lidar com arquivos grandes ou binários, pois
ele foi projetado para versionar texto, como código-fonte. Existem várias limitações e
problemas ao tentar versionar arquivos grandes diretamente:

• Limite de tamanho: serviços como o GitHub impõem limites de 100 MB por
arquivo, impedindo o envio de arquivos muito grandes via Git comum.

• Histórico inflado: cada nova versão de um arquivo binário é armazenada integral-
mente, sem compressão eficiente, o que faz o repositório crescer rapidamente.

• Operações lentas: com muitos arquivos grandes no histórico, operações como
git clone, git fetch e git checkout tornam-se mais lentas.

• Dificuldade de merge: arquivos binários não podem ser mesclados (merge) facil-
mente, aumentando o risco de conflitos.

O Git LFS resolve esses problemas ao:

• Armazenar apenas ponteiros leves no repositório Git;

• Manter o conteúdo real em um armazenamento separado, acessível sob de-
manda;

• Permitir a revogação ou substituição de arquivos sem reescrever o histórico;

• Proporcionar uma experiência de versionamento transparente, pois os comandos
Git (add, commit, push) continuam funcionando normalmente.

5.1.2 Como Funciona

O Git LFS utiliza um sistema de filtros configurados no Git:

• O filtro clean atua ao adicionar um arquivo rastreado pelo LFS, substituindo seu
conteúdo real por um ponteiro antes de armazená-lo no repositório.

• O filtro smudge atua durante o checkout ou clone, baixando automatica-
mente o arquivo real do servidor LFS e substituindo o ponteiro pelo conteúdo
original no diretório de trabalho.

O arquivo versionado no Git contém apenas algo como:

version https://git-lfs.github.com/spec/v1

oid sha256:3b6f1a8a...

size 1258291

Essas informações são suficientes para que o Git LFS localize e baixe o conteúdo
correto quando necessário.

5.1.3 Vantagens

• Mantém o repositório leve e rápido;

• Suporta arquivos grandes (acima de 100 MB);

• Permite versionamento de arquivos binários;

• Integra-se com GitHub, GitLab e Bitbucket;

• Possibilita bloqueio de arquivos (lock) para evitar conflitos.

5.1.4 Limitações

• O armazenamento LFS pode ter cotas e custos adicionais em serviços remotos;

• Necessita de instalação e configuração local (git lfs install);

• Requer que o servidor remoto suporte LFS;

• Para repositórios antigos, pode ser necessário migrar o histórico.

5.1.5 Exemplo de Uso

Instala o Git LFS no sistema

git lfs install

Define tipos de arquivo que serão rastreados pelo LFS

git lfs track "*.zip"

git lfs track "*.psd"

Adiciona e versiona normalmente

git add .gitattributes

git add arquivo.zip

git commit -m "Adiciona arquivo grande com Git LFS"

git push origin main

5.1.6 Boas Práticas

• Configure o Git LFS antes de adicionar arquivos grandes;

• Use o comando git lfs track para definir padrões de arquivos;

• Verifique o status com git lfs status;

• Evite rastrear arquivos pequenos em grande quantidade;

• Monitore o uso de armazenamento e transferências.

6 Commits, Merges e Pull Requests

6.1 Introdução

Commits, merges e pull requests são elementos centrais no fluxo de trabalho com
Git e plataformas como GitHub. Um commit é uma unidade lógica de alteração no
repositório; um merge integra mudanças de uma branch em outra; e um pull request
(PR) é uma solicitação formal de revisão e integração de uma branch normalmente
usada em colaboração para revisar código, executar checks automáticos (CI) e registrar
a decisão de integrar.

6.2 Commits

6.2.1 O que é um commit

Um commit registra o estado do diretório de trabalho (os arquivos staged) em um nó
do histórico do Git. Cada commit tem um identificador (SHA), metadata (autor, data) e
uma mensagem que descreve a mudança.

6.2.2 Boas práticas de commits

• Faça commits atômicos: cada commit deve representar uma única mudança ló-
gica.

• Mensagens claras: use assunto imperativo curto (∼50 caracteres) + linha em
branco + corpo explicativo se necessário (72 caracteres por linha).

• Inclua referência a issues quando relevante (ex.: “Closes #42”).

• Evite commitar arquivos gerados (binários, dependências) use .gitignore.

• Assine commits quando necessário: git commit -S -m "..." (GPG).

6.2.3 Fazendo commits passo a passo

1. Verificar o estado dos arquivos:

git status

2. Ver as mudanças não staged:

git diff # diferenças não adicionadas ao stage

git diff --staged # diferenças preparadas para commit

3. Adicionar alterações ao stage (todo arquivo ou interativo):

git add caminho/arquivo.txt # adiciona arquivo específico

git add . # adiciona tudo (cuidado)

git add -p # adiciona parcialmente (patch)

4. Criar o commit com boa mensagem:

git commit -m "Assunto curto em imperativo"

ou para mensagem longa (editor):

git commit

Exemplo de mensagem:

Corrige cálculo de juros

Ajusta a fórmula de cálculo para considerar juros compostos

quando o período é maior que 12 meses. Testes unitários

adicionados para cobrir casos de fronteira.

5. Ver histórico resumido:

git log --oneline --graph --decorate --all

6.2.4 Editar o último commit / corrigir mensagens

alterar o conteúdo do último commit (já staged)

git commit --amend

alterar apenas a mensagem do último commit

git commit --amend -m "Nova mensagem"

Atenção: se o commit já foi enviado ao remoto, evite -amend sem combinar com a
equipe ele reescreve o histórico e exigirá push forçado.

6.2.5 Desfazer / alterar staging

git restore --staged arquivo.txt # remove do stage, mantém

alteração no working tree

git restore arquivo.txt # descarta alteração no

working tree (se não commitada)

git reset --soft HEAD~1 # desfaz último commit, mantendo

mudanças staged

git reset --mixed HEAD~1 # desfaz último commit, mantendo

mudanças no working tree

(unstaged)

git reset --hard HEAD~1 # desfaz último commit e

descarta mudanças (CUIDADO)

6.2.6 Padrões de Commits

Manter um padrão consistente nas mensagens de commit é fundamental para garan-
tir um histórico de versões claro, fácil de compreender e rastrear. Um bom padrão de
commit permite que outros desenvolvedores entendam rapidamente o que foi alterado,
por que foi alterado e qual impacto a mudança traz.

Existem diferentes convenções adotadas por equipes e comunidades. Veja a tabela
4 na página 90 para ver padrões populares.

Acesse também as referencias:

• Adorno 2021;

• Iuricode 2023;

Boas práticas ao escrever commits

• Use o modo imperativo (ex.: “adiciona“, “corrige“, “remove“);

• Mantenha a linha de assunto com no máximo 50 caracteres;

• Separe título e corpo com uma linha em branco;

• Descreva o motivo da mudança no corpo, não apenas o que foi alterado;

• Use referências a issues quando aplicável (ex.: “Closes #123“);

• Escreva mensagens em português ou inglês, mas mantenha um idioma único no
projeto.

Exemplo de commit completo

feat(api): adiciona endpoint para criação de pedidos

Adiciona o endpoint POST /orders para permitir o cadastro

de novos pedidos. Inclui validação de campos obrigatórios

e testes unitários. Closes #42.

Vantagens de seguir um padrão

• Histórico limpo e fácil de entender;

• Facilita revisão de código e auditorias;

• Permite geração automática de changelogs;

• Ajuda em pipelines de CI/CD e versionamento semântico;

• Melhora colaboração em equipes e projetos open source.

6.3 Merges

6.3.1 Tipos de merge

Fast-forward Se a branch destino não avançou desde que a feature foi criada, o Git
apenas avança o ponteiro (sem novo commit de merge).

Merge commit Cria um commit de merge que documenta a união de dois históricos
(útil para preservar contexto de branch).

Rebase Reaplica commits de uma branch sobre outra, produzindo um histórico linear
(reduz “ruído” dos merges, mas reescreve histórico).

6.3.2 Merge local com merge commit (passo a passo)

1. Atualize a branch principal:

git checkout main

git pull origin main

2. Mudar para a branch de feature (se necessário):

git checkout feature/minha-feature

git pull origin feature/minha-feature

3. Voltar para a branch de destino e fazer merge:

git checkout main

git merge --no-ff feature/minha-feature

--no-ff força um commit de merge,

preservando histórico da branch

4. Caso não haja conflitos, o Git criará o commit de merge automaticamente. Em
caso de conflitos, siga a seção "Resolver conflitos"abaixo.

5. Envie as mudanças para o remoto:

git push origin main

6.3.3 Rebase (passo a passo) para um histórico linear

1. Atualize a base:

git checkout main

git pull origin main

2. Rebase da feature sobre a main:

git checkout feature/minha-feature

git rebase main

3. Resolva conflitos (se aparecerem), use git rebase -continue e, ao final:

force push (com cuidado) após reescrever histórico

git push --force-with-lease origin feature/minha-feature

4. Observação: reescrever histórico (rebase + push forçado) requer coordenação
com outros colaboradores.

6.3.4 Resolver conflitos passo a passo

1. Ao encontrar conflito durante merge/rebase, o Git mostra arquivos conflitantes:

CONFLICT (content): Merge conflict in caminho/arquivo.txt

2. Abra o arquivo e localize os marcadores:

<<<<<<< HEAD

conteúdo na branch atual (main)

=======

conteúdo vindo da branch feature/minha-feature

>>>>>>> feature/minha-feature

3. Edite o arquivo para a versão desejada (manter, combinar ou reescrever o trecho).

4. Marque o conflito como resolvido:

git add caminho/arquivo.txt

se for rebase:

git rebase --continue

se for merge:

git commit # caso o Git não tenha criado o commit automaticamente

5. Se quiser abortar a operação:

git merge --abort # durante um merge

git rebase --abort # durante um rebase

6.3.5 Squash e reescrita de commits (passo a passo)

1. Interative rebase para combinar commits locais:

git checkout feature/minha-feature

git rebase -i main

2. No editor que abre, marque squash (ou s) nos commits que deseja unir ao
commit anterior. Salve e feche.

3. Após o rebase, force push com segurança:

git push --force-with-lease origin feature/minha-feature

4. Use -force-with-lease em vez de -force quando possível ele evita so-
brescrever pushes alheios.

6.4 Pull Requests (PR)

6.4.1 O que é um Pull Request

Um PR é uma solicitação para integrar as mudanças de uma branch em outra (nor-
malmente de uma branch de feature para main ou develop) e serve como ponto cen-
tral para revisão de código, execução de pipelines de CI e documentação da mudança.

6.4.2 Fluxo básico criando um PR (via web)

1. Crie uma branch local para a sua feature:

git checkout -b feature/minha-feature

2. Faça commits locais e envie a branch para o remoto:

git push -u origin feature/minha-feature

3. No repositório do GitHub, acesse Pull requests→ New pull request.

4. Selecione a branch de origem (feature/minha-feature) e a branch de destino
(ex.: main).

5. Preencha o título e a descrição: explique o porquê e o o que foi alterado. Use
referências a issues (ex.: “Closes #123”).

6. Configure revisores, labels, milestone e assignees.

7. Se ainda não está pronta, crie como Draft pull request (rascunho).

8. Aguarde revisão, corrija comentários fazendo novos commits na mesma branch e
push eles serão anexados automaticamente ao PR.

9. Quando aprovado, escolha a estratégia de merge (merge commit / squash and
merge / rebase and merge) e realize o merge.

6.4.3 Criar e gerenciar PRs via GitHub CLI (passo a passo)

autentique (uma vez)

gh auth login

depois de push da branch

gh pr create --base main --head feature/minha-feature --title "Título do PR" --body "Descrição detalhada" --reviewer usuario1,usuario2

abrir PR como draft:

gh pr create --draft --base main --head feature/minha-feature --fill

listar PRs locais:

gh pr list

fechar ou mesclar via CLI:

gh pr merge <numero-ou-url> --squash --delete-branch

ou

gh pr merge <numero> --merge # cria commit de merge

gh pr merge <numero> --rebase # rebase and merge

6.4.4 Checklist para revisão de Pull Request

• O PR tem um título e descrição claros (o porquê e o o que);

• Testes automatizados adicionados/atualizados e pipeline CI passando;

• Código segue padrões de lint e estilo;

• Mudanças pequenas e focadas (um PR por responsabilidade);

• Documentação e comentários quando necessário;

• Evidências visuais (screenshots) quando há alterações de UI.

6.4.5 Depois do merge limpeza e sincronização

atualizar a branch principal local

git checkout main

git pull origin main

remover branch remota (após merge)

git push origin --delete feature/minha-feature

remover branch local

git branch -d feature/minha-feature

caso a branch não possa ser deletada por não estar totalmente mesclada:

git branch -D feature/minha-feature

Também é útil rodar:

git fetch --prune

para remover referências remotas deletadas.

6.5 Boas práticas e recomendações finais

• Mantenha PRs pequenos e revisáveis; grandes PRs demoram mais para receber
feedback.

• Automatize checks com CI (testes, lint, análise estática) e impeça merge enquanto
falharem (branch protection).

• Use -force-with-lease quando precisar reescrever histórico; nunca force
sem checar se colegas não empurraram commits.

• Documente o fluxo do time (merge strategy preferida ex.: squash para commits
limpos, merge commit para histórico preservado).

• Escreva mensagens de commit úteis e mantenha um padrão no time (ex.: Conven-
tional Commits) para facilitar geração automática de changelogs.

6.6 Exemplos rápidos de comandos úteis

ver status e diferenças

git status

git diff

git diff --staged

histórico e log

git log --oneline --graph --decorate --all

adicionar parcialmente

git add -p

rebase interativo (últimos 3 commits)

git rebase -i HEAD~3

desfazer mudanças locais (trabalhe com cuidado)

git restore arquivo.txt

git reset --hard HEAD

forçar push com segurança

git push --force-with-lease origin minha-branch

7 GitHub Pages e GitHub Actions

7.1 O que é GitHub Pages?

GitHub Pages é uma ferramenta gratuita oferecida pelo GitHub para hospedagem
de sites estáticos diretamente a partir de um repositório. Essa funcionalidade permite
que desenvolvedores publiquem páginas web com tecnologias como HTML, CSS e
JavaScript, sem a necessidade de servidores adicionais ou configuração complexa.

Entre as principais características do GitHub Pages, podemos destacar:

• Hospedagem gratuita: todo repositório público pode gerar uma página web sem
custos.

• Suporte a domínios personalizados: é possível usar seu próprio domínio, além
do subdomínio padrão do GitHub (username.github.io).

• Atualização automática: sempre que você faz um push no repositório, o site é
atualizado automaticamente.

• Compatibilidade com geradores de site estático: ferramentas como Jekyll, Hugo

e Eleventy podem ser integradas facilmente.

Exemplo de uso: um repositório com um arquivo index.html na branch main
pode ser publicado acessando o GitHub Pages nas configurações do repositório, sem
qualquer configuração adicional.

7.2 O que é GitHub Actions?

O GitHub Actions é uma plataforma de automação que permite criar fluxos de traba-
lho (workflows) para automatizar tarefas de desenvolvimento. Ele funciona diretamente
no GitHub, sem necessidade de servidores externos, e pode ser usado para:

• Testes automatizados: executar testes sempre que houver alterações no código.

• Compilação e build de projetos: gerar executáveis, bibliotecas ou pacotes para
diferentes plataformas.

• Publicação automática: enviar versões de aplicativos ou páginas web para am-
bientes de produção.

• Integração contínua (CI) e entrega contínua (CD): garantir que o código envi-
ado para o repositório esteja sempre funcional.

Estrutura de um workflow: Um workflow é definido por arquivos YAML dentro
da pasta .github/workflows/ do repositório e consiste basicamente em:

• name: nome do workflow.

• on: eventos que disparam o workflow, como push, pull_request, etc.

• jobs: conjunto de tarefas a serem executadas.

• steps: etapas dentro de cada job, que podem incluir instalação de dependên-
cias, execução de scripts, testes, builds e deploy.

7.3 Integração entre GitHub Pages e GitHub Actions

A integração entre GitHub Pages e GitHub Actions permite automatizar a publica-
ção de sites sempre que o código for atualizado. Esse processo envolve:

1. Configuração do repositório para hospedar o site na branch gh-pages ou na
pasta /docs.

2. Criação de um workflow no GitHub Actions, geralmente disparado pelo evento
push na branch principal (main).

3. Etapas do workflow típicas:

• Instalação de dependências: por exemplo, instalar Node.js e pacotes ne-
cessários.

• Compilação do site: gerar os arquivos finais (HTML, CSS, JS).

• Publicação: enviar os arquivos para a branch ou pasta configurada para
GitHub Pages.

4. Verificação: após o deploy, o site é atualizado automaticamente, podendo ser
acessado pelo domínio configurado.

Exemplo de arquivo de workflow simples (deploy.yml):

name: Deploy GitHub Pages

on:

push:

branches:

- main

jobs:

build:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v3

- name: Setup Node.js

uses: actions/setup-node@v3

with:

node-version: ’18’

- name: Install dependencies

run: npm install

- name: Build site

run: npm run build

- name: Deploy to GitHub Pages

uses: peaceiris/actions-gh-pages@v3

with:

github_token: ${{ secrets.GITHUB_TOKEN }}

publish_dir: ./dist

Benefícios da integração:

• Atualização automática do site sem intervenção manual.

• Garantia de que apenas código validado e testado seja publicado.

• Possibilidade de incluir etapas adicionais, como otimização de imagens, minifica-
ção de CSS/JS e execução de testes automatizados antes do deploy.

8 Assinaturas de Commits com
chave GPG

8.1 O que é?

A assinatura de commits com GPG (GNU Privacy Guard) é um recurso do Git que
permite garantir a autenticidade e a integridade das alterações feitas em um repositório.
Quando um commit é assinado, outras pessoas podem verificar que aquele commit foi
realmente feito por você, evitando alterações fraudulentas ou commits não autorizados.

8.1.1 Importância das assinaturas GPG

• Segurança: Confirma que o commit foi feito pelo autor legítimo.

• Integridade: Permite verificar se o commit não foi alterado após sua criação.

• Transparência: Em projetos open source, facilita identificar contribuições con-
fiáveis.

8.2 Como usar?

8.2.1 Passo 1: Instalar o GPG

Antes de assinar commits, você precisa instalar o GPG no seu sistema.

• Linux/Debian:

sudo apt update

sudo apt install gnupg

• Windows: Instale o Gpg4win (<https://www.gpg4win.org/>)

• MacOS:

https://www.gpg4win.org/

brew install gnupg

8.2.2 Passo 2: Gerar uma chave GPG

Para criar uma chave GPG pessoal, use o comando:

gpg --full-generate-key

O terminal fará algumas perguntas:

1. Tipo de chave: selecione RSA and RSA (default).

2. Tamanho da chave: recomendo 4096 bits para maior segurança.

3. Validade da chave: escolha o período de validade ou 0 para sem expiração.

4. Nome e e-mail: use o mesmo e-mail configurado no Git (git config user.email).

5. Senha: defina uma senha segura para proteger sua chave.

8.2.3 Passo 3: Listar chaves e copiar o ID da chave

Para ver as chaves criadas:

gpg --list-secret-keys --keyid-format LONG

O resultado terá um formato como:

sec rsa4096/ABCDEF1234567890 2025-01-01 [SC]

Key fingerprint = 1234 5678 9ABC DEF0 1234

5678 9ABC DEF0 1234 5670

uid Seu Nome <seuemail@example.com>

O que você precisa é do ID da chave, que no exemplo acima é ABCDEF1234567890.

8.2.4 Passo 4: Configurar o Git para usar a chave GPG

Diga ao Git qual chave usar para assinar commits:

git config --global user.signingkey ABCDEF1234567890

git config --global commit.gpgsign true

8.2.5 Passo 5: Adicionar a chave GPG ao GitHub

Para que o GitHub reconheça seus commits assinados:

1. Copie a chave pública:

gpg --armor --export ABCDEF1234567890

2. Entre no GitHub: Settings > SSH and GPG keys > New GPG key

3. Cole a chave pública e salve.

8.2.6 Passo 6: Fazer commits assinados

A partir de agora, todos os commits serão assinados automaticamente. Você também
pode assinar commits individualmente:

git commit -S -m "Mensagem do commit"

No GitHub, os commits assinados aparecerão com a etiqueta Verified.

8.2.7 Passo 7: Verificar commits assinados

Para verificar um commit localmente, use:

git log --show-signature

O Git mostrará se o commit foi assinado corretamente e qual chave foi usada.

8.3 Dicas de segurança e boas práticas

• Proteja sua chave GPG com uma senha forte.

• Faça backup da chave privada em um local seguro.

• Não compartilhe sua chave privada.

• Rotacione suas chaves periodicamente, se necessário.

9 Exercícios Práticos

Observação: Todas as atividades devem seguir as boas práticas de commits, merges
e pull requests.

9.1 Git e GitHub-CLI

9.1.1 Objetivo

Verificar se as ferramentas estão instaladas corretamente.

9.1.2 Passo a Passo Detalhado

1. Abrir o terminal (Prompt de Comando no Windows, Terminal no Mac/Linux)

2. Verificar se o Git está instalado:

git --version

Resultado esperado: Deve aparecer algo como git version 2.xx.x

3. Verificar se o GitHub CLI está instalado:

gh --version

Resultado esperado: Deve aparecer algo como gh version 2.xx.x

9.1.3 Problemas Comuns e Soluções

• Se algum comando não for reconhecido, reinstale a ferramenta

• No Windows, talvez seja necessário reiniciar o computador após a instalação

9.2 Criar um repositório no GitHub via CLI

9.2.1 Objetivo

Criar um repositório público com descrição.

9.2.2 Pré-requisito

Fazer login no GitHub CLI:

gh auth login

9.2.3 Passo a Passo

1. Criar o repositório:

gh repo create meu-primeiro-repo --public

--description "Meu primeiro repositório" --clone

2. Entrar na pasta do repositório:

cd meu-primeiro-repo

9.2.4 README.md

9.2.4.1 O que é README.md

• É a "cara"do seu projeto no GitHub

• Explica o que seu projeto faz, como usar, etc.

• Usa uma linguagem chamada Markdown (por isso o .md)

9.2.4.2 Como Criar

1. Criar o arquivo:

echo "# Meu Primeiro Projeto" >> README.md

2. Adicionar conteúdo:

Meu Primeiro Projeto

Este é meu primeiro repositório no GitHub!

O que este projeto faz?

- Aprender Git e GitHub

- Praticar comandos

- Compartilhar conhecimento

Como usar?

1. Clone este repositório

2. Siga as instruções

3. Aprenda!

3. Salvar e enviar para o GitHub:

git add README.md

git commit -m "docs(readme): Adiciona README com

a descrição do projeto"

git push origin main

Em git push origin main, pode ser colocado a flag -u, ou seja, git
push -u origin main isso precisará ser feito apenas uma vez os próximos
pushes poderão apenas se fazer com git push. A flag -u faz com que o git se
torne um colaborador do repositório, ou seja, ele não precisa mais digitar origin e
main, ele já sabe que é o repositório principal.

9.2.5 LICENSE

9.2.5.1 Por que usar LICENSE

• Define como outras pessoas podem usar seu código

• Protege seus direitos autorais

• Torna seu projeto mais profissional

9.2.5.2 Como Adicionar Licença MIT

1. Criar arquivo LICENSE:

touch LICENSE

2. Adicionar conteúdo da licença MIT:

1 MIT License

2

3 Copyright (c) [ano] [seu nome]

4

5 Permission is hereby granted, free of charge, to any person

6 obtaining a copy of this software and associated

documentation

7 files (the "Software"), to deal in the Software without

8 restriction, including without limitation the rights to use,

9 copy, modify, merge, publish, distribute, sublicense, and/or

10 sell copies of the Software, and to permit persons to whom

11 the Software is furnished to do so, subject to the following

12 conditions:

13

14 The above copyright notice and this permission notice shall

15 be included in all copies or substantial portions of the

Software.

16

17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND,

18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES

19 OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

21 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

22 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

23 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR

24 OTHER DEALINGS IN THE SOFTWARE.

Listing 9.1 – Licença MIT

3. Substituir [ano] e [seu nome] pelos seus dados

4. Salvar e enviar:

git add LICENSE

git commit -m "chore(licensing):Adiciona licença MIT"

git push origin main

9.3 Clonando um repositório do GitHub

9.3.1 Objetivo

Aprender a baixar repositórios existentes.

9.3.2 Passo a Passo

1. Repositório alvo: https://github.com/ronidomingues/github-capacitation

2. Copiar a URL do repositório

3. No terminal, clonar:

git clone https://github.com/ronidomingues/

github-capacitation.git

4. Entrar na pasta criada:

cd github-capacitation

5. Verificar o conteúdo:

ls -la

9.4 Github Pages

9.4.1 Objetivo

Publicar um site gratuitamente.

9.4.2 Passo a Passo

1. Criar novo repositório:

gh repo create meu-site --public

--description "Meu primeiro site" --clone

cd meu-site

2. Copiar os arquivos do jogo (HTML, CSS, JS) para a pasta do repositório

3. Verificar estrutura:

ls -la

4. Adicionar, commitar e enviar:

git add .

git commit -m "feat(jogo): adiciona arquivos do jogo"

git push origin main

5. Ativar GitHub Pages:

• No GitHub, vá em Settings Pages

• Em Source, selecione main branch

• Clique Save

6. Acessar seu site:

• URL será: https://seu-usuario.github.io/meu-site

9.5 Github Actions

9.5.1 Objetivo

Automatizar execução de código Python.

9.5.2 Passo a Passo

1. Criar repositório para o código Python:

gh repo create meu-script-python --public

--description "Script Python com GitHub Actions" --clone

cd meu-script-python

2. Copiar o arquivo Python fornecido para o repositório

3. Criar pasta para workflows:

mkdir -p .github/workflows

4. Criar arquivo de workflow:

touch .github/workflows/python.yml

5. Adicionar conteúdo ao workflow - Prencher o que falta:

Há um miodelo com fortran 90, disponível na pasta materials.

name: "Executar script Python e Commitar resultado"

on:

push:

branches: [main]

workflow_dispatch:

jobs:

build-run:

runs-on: ubuntu-latest

steps:

1 Faz o clone do repositório para a VM Ubuntu;

2 Configura o Python a ser usado pela VM;

-name: Instalar Python3

uses: actions/setup-python@v5

with:

python-version: ’3.x’

3 Executa o script Python;

4 Cria um commit com o resultado;

-name: Commitar PDFs gerados

run: |

git config user.name "github-actions[bot]"

git config user.email "github-actions

[bot]@users.noreply.github.com"

git add materials/*.pdf

git commit -m "Atualizar PDFs compilados

automaticamente [skip ci]" || echo "Nenhuma

alteração para commitar"

git push

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

9.5.3 Uso de [skip ci] no GitHub Actions

No GitHub Actions, um workflow normalmente é disparado por eventos como:

on:

push:

branches:

- main

Ou seja, cada git push aciona o workflow.

Quando o próprio workflow realiza um commit e push automaticamente (por
exemplo, atualizando arquivos gerados ou listas), isso poderia disparar o work-
flow novamente, criando um loop infinito.

Para evitar esse problema, é possível incluir no commit uma anotação especial:

git commit -m "Atualiza lista automática [skip ci]"

O código [skip ci] instrui o GitHub Actions (e outros sistemas de CI, como
GitLab CI ou Travis CI) a ignorar este commit, ou seja, não disparar nenhum
workflow.

Dessa forma, o workflow pode atualizar arquivos ou fazer commits automatica-
mente sem reiniciar seu próprio processo indefinidamente.

Observação: Além de [skip ci], também é possível usar [ci skip], que
possui a mesma função.

6. Adicionar, commitar e enviar tudo:

git add .

git commit -m "feat:Adiciona script Python e GitHub Actions"

git push origin main

7. Verificar execução:

• No GitHub, vá em Actions para ver o workflow rodando

9.6 Merge

9.6.1 Objetivo

Aprender a juntar alterações de diferentes origens.

9.6.2 Passo a Passo

1. Fazer alteração REMOTA:

• No GitHub, edite o README.md online

• Adicione uma linha no final

• Commit a alteração

2. Fazer alteração LOCAL:

No seu computador, no mesmo repositório

echo "Alteração local" >> arquivo-local.txt

git add arquivo-local.txt

git commit -m "Adiciona arquivo local"

3. Tentar enviar alteração local:

git push origin main

VAI DAR ERRO! Porque tem alteração remota

que você não tem localmente

4. Fazer merge:

git pull origin main

Isso baixa as alterações remotas e faz merge

com suas alterações locais

5. Resolver conflitos (se houver):

• Se Git não conseguir juntar automaticamente, ele pedirá para resolver ma-
nualmente

• Abra os arquivos com conflitos, resolva e depois:

git add .

git commit -m "Resolve conflitos de merge"

git push origin main

9.7 Pull Request

9.7.1 Objetivo

Contribuir para projetos de outras pessoas.

9.7.2 Passo a Passo

1. Fork do repositório original:

• No GitHub, vá para o repositório <https://github.com/ronidomingues/github-capacitation>

• Clique em Fork (canto superior direito)

• Isso cria uma cópia em sua conta

2. Clonar SEU fork:

git clone https://github.com/seu-usuario/

repositorio-forkado.git

cd repositorio-forkado

3. Criar branch para sua feature:

git checkout -b minha-feature

4. Fazer suas alterações:

Entre na pasta presences e adicione um arquivo .txt com o seu nome, por
exemplo roni.txt, esse arquivo não precisa ter nenhum conteúdo, mas se quei-
ser deixar uma avaliação de tudo até aqui será ótimo ; −).

echo "Minha avaliacao" >> presences/meu-nome.txt

5. Commit e push:

git add .

git commit -m "<tipo>(escopo): <descrição>"

git push origin minha-feature

6. Criar Pull Request:

https://github.com/ronidomingues/github-capacitation

• No GitHub, vá para SEU fork

• Clique em Pull Request New Pull Request

• Selecione: base (repositório original) compare (sua branch)

• Descreva suas alterações

• Clique Create Pull Request

9.8 Materiais de Apoio

9.8.1 Checklist para Cada Exercício

□ Comandos executados sem erro

□ Arquivos criados corretamente

□ Commits com mensagens descritivas

□ Push realizado com sucesso

□ Resultado verificado no GitHub

9.8.2 Comandos Úteis para Consulta

Status do repositório

git status

Ver histórico de commits

git log --oneline

Ver diferenças

git diff

Ver configuração

git config --list

9.8.3 Dicas para Boas Práticas

• Commits frequentes e pequenos

• Mensagens de commit claras e descritivas

• Sempre fazer pull antes de push

• Testar localmente antes de enviar

• Revisar código antes de criar PR

10 Conclusão

Ao longo desta capacitação, foram abordados os principais conceitos e ferramentas
que compõem o ecossistema do GitHub, desde a criação e configuração de repositó-
rios até a realização de operações complexas como merges, rebases, pull requests e a
automação de pipelines com GitHub Actions.

O domínio dessas habilidades não apenas facilita a colaboração em projetos de soft-
ware, mas também promove a adoção de boas práticas de desenvolvimento, como com-
mits semânticos, revisão de código e integração contínua. A utilização de recursos como
Git LFS para arquivos grandes e a assinatura de commits com chaves GPG reforça a se-
gurança e a integridade do versionamento.

Por fim, a realização dos exercícios práticos propostos consolida o aprendizado e
prepara o participante para atuar em ambientes reais, contribuindo de forma eficiente
e profissional em projetos individuais e em equipe. Espera-se que este material sirva
como referência contínua e incentive a adoção de um fluxo de trabalho organizado,
colaborativo e alinhado com as melhores práticas do mercado.

Referências

Adorno 2021 ADORNO, R. Padrões de Commits (Commit Patterns). 2021.
<https://dev.to/renatoadorno/padroes-de-commits-commit-patterns-41co>. Acesso em:
8 out. 2025.

Iuricode 2023 IURICODE. Padrões de Commits. 2023. <https://github.com/iuricode/
padroes-de-commits>. Repositório GitHub. Acesso em: 8 out. 2025.

Microsoft 2025 MICROSOFT. Gerenciador de Pacotes do Windows (winget). 2025.
<https://learn.microsoft.com/pt-br/windows/package-manager/winget/>. Acesso em: 8
out. 2025.

https://dev.to/renatoadorno/padroes-de-commits-commit-patterns-41co
https://github.com/iuricode/padroes-de-commits
https://github.com/iuricode/padroes-de-commits
https://learn.microsoft.com/pt-br/windows/package-manager/winget/

Apêndices

APÊNDICE A – Comandos Git

Este apêndice apresenta uma referência completa dos principais comandos Git orga-
nizados por categoria e funcionalidade.

Comandos Git

Tabela 2 – Comandos do Git

Comando Categoria Explicação Detalhada
git init Configuração/Setup Transforma o diretório atual em um repo-

sitório Git, criando o diretório.git. Pode
ser executado com segurança em um dire-
tório existente sem sobrescrever configu-
rações.

git config Configuração/Setup Lê ou define variáveis de configuração em
nível de sistema, global ou local. Essen-
cial para definir a identidade (user.name,
user.email) do autor do commit.

git clone [url] Configuração/Setup Cria uma cópia local de um repositório re-
moto. Configura automaticamente a refe-
rência ’origin’ e faz o checkout da branch
principal.

git add [file] Snapshotting Básico Move alterações de um arquivo do Wor-
king Tree para o Index (Staging Area),
preparando-o para o próximo commit.

git status Snapshotting Básico Exibe o estado da Working Tree e do In-
dex, listando arquivos modificados, sta-
ged ou não rastreados.

Continua na próxima página

Continuação da Tabela: Comandos do Git
Comando Categoria Explicação Detalhada
git diff Snapshotting Básico Mostra as diferenças entre o Working

Tree e o Index (alterações não staged).

git diff –staged Snapshotting Básico Mostra as diferenças entre o Index (Sta-
ging Area) e o último commit (HEAD).

git commit -m
"[msg]"

Snapshotting Básico Salva o conteúdo atualmente no Index
como um novo snapshot permanente
(commit) na história.

git commit
–amend

Manipulação Histórico Altera o commit anterior, seja modifi-
cando sua mensagem ou adicionando/re-
movendo arquivos. Isso reescreve o histó-
rico, gerando um novo SHA.

git rm [file] Gerenciamento Ar-
quivo

Remove um arquivo do Working Tree e
do Index. O uso de -cached remove
apenas do Index, mantendo o arquivo lo-
cal.

git mv [old][new] Gerenciamento Ar-
quivo

Move ou renomeia um arquivo de forma
rastreada pelo Git.

git clean Gerenciamento Ar-
quivo

Remove arquivos não rastreados (untrac-
ked files) do Working Tree.

git reset –soft
[hash]

Manipulação Histórico Move o ponteiro HEAD para o commit,
mas mantém o Index e o Working Tree
intactos (alterações permanecem staged).

git reset –mixed
[hash]

Manipulação Histórico (Padrão) Move o HEAD para o commit e
reseta o Index (desencena arquivos), pre-
servando o Working Tree.

git reset –hard
[hash]

Manipulação Histórico Move o HEAD e reseta o Index e o Wor-
king Tree, descartando todas as mudan-
ças locais desde o hash. Altamente des-
trutivo.

Continua na próxima página

Continuação da Tabela: Comandos do Git
Comando Categoria Explicação Detalhada
git branch Branching/Navegação Gerenciamento de branches: lista, cria ou

deleta branches locais.

git checkout Branching/Navegação Comando legado multi-uso. Alterna en-
tre branches ou restaura arquivos antigos/-
commits, podendo resultar em ’detached
HEAD’.

git switch Branching/Navegação Comando moderno focado em alternar
branches. Atualiza a Working Tree e o In-
dex. Utilizado para criar novas branches
de forma segura.

git merge
[branch]

Integração/Merge Integra alterações de uma branch na atual,
criando um ’merge commit’ se houver di-
vergência. Operação não-destrutiva.

git rebase [base] Integração/Rebase Move ou reaplica commits para uma nova
base, reescrevendo o histórico para mantê-
lo linear. Ideal para branches locais e não
publicadas.

git rebase -i
[base]

Integração/Rebase Modo interativo do rebase, permitindo
squash (combinação), edição ou reordena-
ção de commits.

git cherry-pick
[hash]

Integração/Portabilidade Aplica as alterações introduzidas por um
único commit específico na branch atual,
criando um novo commit equivalente.

git revert [hash] Manipulação Histórico Cria um novo commit que desfaz as alte-
rações introduzidas por um commit ante-
rior. Usado para desfazer mudanças em
histórico compartilhado de forma segura.

Continua na próxima página

Continuação da Tabela: Comandos do Git
Comando Categoria Explicação Detalhada
git fetch Sincronização Remota Baixa dados (objetos e refs) de um reposi-

tório remoto para o repositório local, sem
alterar o Working Tree ou Index (opera-
ção segura).

git pull Sincronização Remota Equivalente a git fetch seguido por uma
integração (default: merge). Pode alterar
o estado local e causar conflitos imediata-
mente (operação menos segura).

git push [re-
mote][branch]

Sincronização Remota Carrega commits locais para um reposi-
tório remoto. Exige uma operação fast-
forward, a menos que -force seja uti-
lizado.

git push –tags Sincronização Remota Envia tags locais para o repositório re-
moto.

git remote Sincronização Remota Gerencia os repositórios remotos rastrea-
dos (e.g., listar, adicionar, remover).

git log Auditoria/Inspeção Exibe o histórico de commits.

git shortlog Auditoria/Inspeção Fornece um resumo conciso do git log,
agrupando commits por autor.

git show Auditoria/Inspeção Exibe informações detalhadas sobre um
objeto Git (commit, tag, etc.).

git reflog Auditoria/Recuperação Registra as atualizações locais no HEAD
e em outras referências, agindo como uma
rede de segurança para recuperar commits
perdidos após resets ou rebase.

git tag Marcação/Utilitários Cria, lista, deleta ou verifica objetos de
tag, usados para marcar pontos estáticos
(releases) no histórico.

Continua na próxima página

Continuação da Tabela: Comandos do Git
Comando Categoria Explicação Detalhada
git tag -a [name] Marcação/Utilitários Cria uma tag anotada (com metadados e

mensagem), preferida para releases públi-
cas.

git stash Utilitários de Contexto Salva temporariamente o Working Direc-
tory e o Index (alterações não comitadas)
para permitir a troca de contexto.

git stash pop Utilitários de Contexto Aplica o último stash salvo e o remove da
lista de stashes.

git stash apply Utilitários de Contexto Aplica o último stash salvo, mas o man-
tém na lista.

git submodule Utilitários Avançados Inicializa, atualiza ou inspeciona submó-
dulos (repositórios aninhados).

git worktree Utilitários Avançados Gerencia múltiplas Working Trees (chec-
kouts) do mesmo repositório, permitindo
trabalhar em várias branches simultanea-
mente.

gitk Utilitários Avançados O navegador de repositório Git (ferra-
menta GUI).

scalar Utilitários Avançados Ferramenta projetada para gerenciar repo-
sitórios Git de grande escala (Large Git
Repositories).

git sparse-
checkout

Utilitários Avançados Reduz a Working Tree para um subcon-
junto de arquivos rastreados, otimizando
o desempenho em repositórios massivos.

APÊNDICE B – Comandos GitHub
CLI

Este apêndice apresenta uma referência dos principais comandos do GitHub CLI
(gh) organizados por funcionalidade.

Comandos do GitHub-CLI (gh)

Tabela 3 – Comandos do GitHub-CLI (gh)

Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh alias set Cria um alias para
um comando gh,
permitindo atalhos
personalizados para
comandos frequentes

gh alias set prc "pr

create"

gh alias list Lista todos os alia-
ses configurados no
GitHub CLI

gh alias list

gh alias delete Remove um alias previ-
amente configurado

gh alias delete prc

gh auth login Autentica o usuário no
GitHub via navegador
web ou token

gh auth login

gh auth logout Remove a autenticação
do usuário atual

gh auth logout

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh auth status Exibe o status de auten-
ticação atual e usuário
conectado

gh auth status

gh auth refresh Renova a autenticação
para um host específico

gh auth refresh

--hostname github.com

gh auth token Exibe o token de auten-
ticação atual

gh auth token

gh browse - Abre o repositório atual
no navegador web

gh browse

gh browse --branch Abre uma branch espe-
cífica no navegador

gh browse --branch

feature-branch

gh browse --commit Abre um commit espe-
cífico no navegador

gh browse --commit

abc123

gh browse --issue Abre uma issue especí-
fica no navegador

gh browse --issue 42

gh browse --pull-request Abre um pull request es-
pecífico no navegador

gh browse

--pull-request 15

gh browse --settings Abre as configurações
do repositório no nave-
gador

gh browse --settings

gh browse --wiki Abre a wiki do repositó-
rio no navegador

gh browse --wiki

gh codes-
pace

code Abre um codespace no
Visual Studio Code

gh codespace code

gh codes-
pace

cp Copia arquivos entre o
sistema local e um co-
despace

gh codespace cp

local.txt remote:./

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh codes-
pace

create Cria um novo codes-
pace

gh codespace create

gh codes-
pace

delete Remove um codespace
específico

gh codespace delete

my-codespace

gh codes-
pace

jupyter Abre um codespace no
JupyterLab

gh codespace jupyter

gh codes-
pace

list Lista todos os codespa-
ces disponíveis

gh codespace list

gh codes-
pace

logs Exibe os logs de um co-
despace específico

gh codespace logs

my-codespace

gh codes-
pace

ports Lista as portas encami-
nhadas de um codes-
pace

gh codespace ports

gh codes-
pace

ports forward Encaminha uma porta
do codespace para o lo-
cal

gh codespace ports

forward 3000:4000

gh codes-
pace

ports visibi-
lity

Define a visibilidade de
uma porta

gh codespace ports

visibility 3000:public

gh codes-
pace

ssh Conecta-se a um codes-
pace via SSH

gh codespace ssh

gh codes-
pace

stop Para um codespace em
execução

gh codespace stop

my-codespace

gh gist create Cria um novo gist a par-
tir de arquivos ou en-
trada padrão

gh gist create

script.py

gh gist clone Clona um gist especí-
fico para o sistema local

gh gist clone abc123

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh gist delete Remove um gist especí-
fico

gh gist delete abc123

gh gist edit Edita um gist existente gh gist edit abc123

gh gist list Lista todos os gists do
usuário

gh gist list

gh gist view Visualiza um gist espe-
cífico no terminal

gh gist view abc123

gh issue create Cria uma nova issue no
repositório

gh issue create --title

"Bug--body "Descrição"

gh issue list Lista issues do reposi-
tório com filtros opcio-
nais

gh issue list --state

open

gh issue status Mostra o status das is-
sues relevantes para o
usuário

gh issue status

gh issue close Fecha uma issue especí-
fica

gh issue close 42

gh issue comment Adiciona um comentá-
rio a uma issue

gh issue comment 42

--body "Comentário"

gh issue delete Remove uma issue es-
pecífica

gh issue delete 42

gh issue edit Edita uma issue exis-
tente

gh issue edit 42

--title "Novo título"

gh issue lock Trava os comentários
de uma issue

gh issue lock 42

gh issue reopen Reabre uma issue fe-
chada

gh issue reopen 42

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh issue transfer Transfere uma issue
para outro repositório

gh issue transfer 42

owner/repo

gh issue view Exibe detalhes de uma
issue específica

gh issue view 42

gh project copy Copia um projeto para
um novo repositório ou
organização

gh project copy 1

--draft --target-owner

novaorg

gh project create Cria um novo projeto gh project create

--title "Meu Projeto"

gh project delete Remove um projeto es-
pecífico

gh project delete 1

gh project edit Edita as propriedades
de um projeto

gh project edit 1

--title "Novo Título"

gh project field Gerencia campos perso-
nalizados do projeto

gh project field create

1 --name "Prioridade"

gh project item Gerencia itens dentro
de um projeto

gh project item add 1

--url <https://github.

com/owner/repo/issues/

1>

gh project list Lista projetos disponí-
veis

gh project list --owner

owner

gh project view Visualiza detalhes de
um projeto específico

gh project view 1

gh pr checks Exibe os status checks
de um pull request

gh pr checks 15

gh pr close Fecha um pull request
específico

gh pr close 15

Continua na próxima página

https://github.com/owner/repo/issues/1
https://github.com/owner/repo/issues/1
https://github.com/owner/repo/issues/1

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh pr comment Adiciona um comentá-
rio a um pull request

gh pr comment 15 --body

"Comentário"

gh pr create Cria um novo pull re-
quest

gh pr create --title

"Feature--body

"Descrição"

gh pr diff Exibe as diferenças in-
troduzidas pelo pull re-
quest

gh pr diff 15

gh pr edit Edita propriedades de
um pull request

gh pr edit 15 --title

"Novo Título"

gh pr list Lista pull requests do
repositório

gh pr list --state open

gh pr merge Mescla um pull request gh pr merge 15 --squash

gh pr ready Marca um pull request
como pronto para revi-
são

gh pr ready 15

gh pr reopen Reabre um pull request
fechado

gh pr reopen 15

gh pr review Adiciona uma revisão a
um pull request

gh pr review 15

--approve

gh pr status Mostra o status dos pull
requests relevantes

gh pr status

gh pr view Exibe detalhes de um
pull request específico

gh pr view 15

gh pr checkout Faz checkout da branch
de um pull request

gh pr checkout 15

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh release create Cria um novo release gh release create

v1.0.0 --title "Versão

1.0.0"

gh release delete Remove um release es-
pecífico

gh release delete

v1.0.0

gh release download Baixa os assets de um
release

gh release download

v1.0.0

gh release list Lista todos os releases
do repositório

gh release list

gh release upload Faz upload de assets
para um release

gh release upload

v1.0.0 arquivo.zip

gh release view Exibe detalhes de um
release específico

gh release view v1.0.0

gh release edit Edita propriedades de
um release existente

gh release edit v1.0.0

--title "Novo Título"

gh repo archive Arquiva um repositório gh repo archive

owner/repo

gh repo clone Clona um repositório
para o sistema local

gh repo clone

owner/repo

gh repo create Cria um novo repositó-
rio

gh repo create meu-repo

--public

gh repo delete Remove um repositório gh repo delete

owner/repo

gh repo edit Edita propriedades de
um repositório

gh repo edit

--description "Nova

descrição"

gh repo fork Cria um fork de um re-
positório

gh repo fork owner/repo

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh repo list Lista repositórios do
usuário ou organização

gh repo list --limit 10

gh repo rename Renomeia um repositó-
rio

gh repo rename

novo-nome

gh repo sync Sincroniza um fork
com seu repositório
upstream

gh repo sync

gh repo view Exibe detalhes de um
repositório

gh repo view owner/repo

gh repo deploy-key Gerencia chaves de de-
ploy do repositório

gh repo deploy-key

add chave.pub --title

"Servidor"

gh repo secret Gerencia secrets do re-
positório

gh repo secret set

API_KEY --body "valor"

gh run cancel Cancela uma execução
de workflow

gh run cancel 123456789

gh run delete Remove execuções de
workflow

gh run delete 123456789

gh run download Baixa artifacts de uma
execução

gh run download

123456789

gh run list Lista execuções de
workflows

gh run list

gh run rerun Reexecuta um work-
flow falho

gh run rerun 123456789

gh run view Exibe detalhes de uma
execução

gh run view 123456789

gh run watch Monitora uma execu-
ção em tempo real

gh run watch 123456789

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh search code Busca por código no
GitHub

gh search code "função

javascript"

gh search commits Busca por commits gh search commits "fix

bug--author=user

gh search issues Busca por issues e pull
requests

gh search issues "bug

label:bug"

gh search prs Busca especificamente
por pull requests

gh search prs "feature

state:open"

gh search repos Busca por repositórios

gh search

repos

"topic:machine-learning"
gh search users Busca por usuários gh search users "nome

location:Brasil"

gh secret list Lista secrets disponí-
veis

gh secret list

gh secret remove Remove um secret espe-
cífico

gh secret remove

API_KEY

gh secret set Define ou atualiza um
secret

gh secret set API_KEY

--body "valor"

gh ssh-key add Adiciona uma chave
SSH à conta

gh ssh-key add

chave.pub --title

"Laptop"

gh ssh-key list Lista chaves SSH da
conta

gh ssh-key list

gh ssh-key delete Remove uma chave
SSH

gh ssh-key delete 123

gh work-
flow

disable Desabilita um work-
flow

gh workflow disable "CI

Tests"

Continua na próxima página

Continuação da Tabela: Comandos do GitHub-CLI (gh)
Comando
Base

Subcomando Explicação Funcional
Detalhada

Exemplo de Sintaxe Chave

gh work-
flow

enable Habilita um workflow gh workflow enable "CI

Tests"

gh work-
flow

list Lista workflows dispo-
níveis

gh workflow list

gh work-
flow

run Executa um workflow
manualmente

gh workflow run "CI

Tests"

gh work-
flow

view Exibe detalhes de um
workflow

gh workflow view "CI

Tests"

APÊNDICE C – Padrões de
Commits

Este apêndice apresenta uma referência completa dos principais padrões de commits
organizados por categoria e funcionalidade.

Padrões de Commits

Tabela 4 – Padrões de Commits Profissionais

Tipo Descrição Quando Utilizar Exemplo
feat Introduz uma

nova funcio-
nalidade ao
projeto.

Quando adicionar no-
vas capacidades ou
funcionalidades.

feat: adicionar

autenticação via

OAuth2

feat(api):

implementar

endpoint de

usuários

fix Corrige um bug
ou erro no có-
digo.

Quando resolver pro-
blemas ou defeitos no
sistema.

fix: corrigir

cálculo de

impostos

fix(auth):

resolver loop

infinito no login

docs Alterações na do-
cumentação.

Quando atualizar RE-
ADME, comentários
ou documentação.

docs: atualizar

guia de

instalação

Continua na próxima página

Continuação da Tabela: Padrões de Commits Profissionais
Tipo Descrição Quando Utilizar Exemplo

docs(api):

adicionar

exemplos de uso

style Mudanças que
não afetam o
significado do
código.

Ao ajustar formata-
ção, espaços, vírgu-
las, etc.

style: corrigir

indentação no CSS

style: remover

espaços em branco

refactor Reestruturação
do código sem
alterar comporta-
mento.

Quando melhorar a
estrutura sem mudar
funcionalidades.

refactor:

extrair método

para reduzir

complexidade

refactor(db):

otimizar queries

SQL

perf Melhorias de per-
formance.

Ao otimizar veloci-
dade ou eficiência do
código.

perf: otimizar

algoritmo de

ordenação

perf: reduzir

tempo de

carregamento em

30%

test Adiciona ou mo-
difica testes.

Ao criar novos testes
ou corrigir existentes.

test: adicionar

testes unitários

para UserService

test: corrigir

teste de

integração

Continua na próxima página

Continuação da Tabela: Padrões de Commits Profissionais
Tipo Descrição Quando Utilizar Exemplo
build Mudanças no sis-

tema de build ou
dependências.

Ao atualizar depen-
dências, Webpack,
Maven, etc.

build: atualizar

React para v18

build:

configurar

Dockerfile

ci Mudanças na
configuração de
CI/CD.

Ao modificar GitHub
Actions, GitLab CI,
Jenkins, etc.

ci: adicionar

pipeline de

deploy automático

ci: configurar

testes E2E no

GitHub Actions

chore Tarefas de manu-
tenção e rotina.

Para atualizações de
rotina que não se en-
caixam em outras ca-
tegorias.

chore: atualizar

versão do

package.json

chore: limpar

dependências não

utilizadas

revert Reverte um com-
mit anterior.

Quando necessário
desfazer mudanças
anteriores.

revert: "feat:

adicionar feature

X"

revert: commit

abc1234

hotfix Correção crítica
para produção.

Para bugs críticos que
exigem correção ime-
diata.

hotfix: corrigir

vulnerabilidade

de segurança

Continua na próxima página

Continuação da Tabela: Padrões de Commits Profissionais
Tipo Descrição Quando Utilizar Exemplo

hotfix: resolver

falha no

processamento

de pagamentos

security Correções relaci-
onadas à segu-
rança.

Ao abordar vulnera-
bilidades ou melhorar
segurança.

security:

atualizar

bibliotecas com

vulnerabilidades

security:

implementar

sanitização de

inputs

init Commit inicial
do projeto.

Para o primeiro com-
mit de um novo pro-
jeto.

init:

configuração

inicial do

projeto

init: estrutura

base da aplicação

Anexos

ANEXO A – Lista de Presença

A.1 Listab de dos mebros presentes na capacitação

Nome Presente em
Persona Presente 09/10/2025 às 14:36:06

Ronivaldo D. Andrade 09/10/2025 às 14:36:06

	Folha de rosto
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	GitHub
	O que é?
	Criando seu perfil no GitHub
	E-mail acadêmico e GitHub Student Developer Pack
	Por que usar o GitHub Student Developer Pack?
	GitHub Free vs GitHub Student Developer Pack (GSDP)
	GitHub Free vs GSDP

	Obtendo o GitHub Student Developer Pack

	Winget
	O que é?
	Porque usar nessa capacitação?
	Instalação
	Atualização

	Git e GitHub-CLI
	O que é o Git?
	Instalação do Git

	O que é o GitHub-CLI?
	Instalação do GitHub-CLI

	Configuração do Git e GitHub-CLI
	Autenticação
	Autenticação com o GitHub-CLI

	Configuração de usuário Git
	Autenticação usando PAT (Opcional)

	Configuração de Editor Padrão (Opcional)
	Configurar a branch padrão para 'main' (Opcional)

	Comandos Básicos do Git e GitHub-CLI
	Comandos Básicos do Git
	Comandos Básicos do GitHub-CLI

	Git LFS
	O que é?
	Motivos e Problemas que Resolve
	Como Funciona
	Vantagens
	Limitações
	Exemplo de Uso
	Boas Práticas

	Commits, Merges e Pull Requests
	Introdução
	Commits
	O que é um commit
	Boas práticas de commits
	Fazendo commits — passo a passo
	Editar o último commit / corrigir mensagens
	Desfazer / alterar staging
	Padrões de Commits

	Merges
	Tipos de merge
	Merge local com merge commit (passo a passo)
	Rebase (passo a passo) — para um histórico linear
	Resolver conflitos — passo a passo
	Squash e reescrita de commits (passo a passo)

	Pull Requests (PR)
	O que é um Pull Request
	Fluxo básico — criando um PR (via web)
	Criar e gerenciar PRs via GitHub CLI (passo a passo)
	Checklist para revisão de Pull Request
	Depois do merge — limpeza e sincronização

	Boas práticas e recomendações finais
	Exemplos rápidos de comandos úteis

	GitHub Pages e GitHub Actions
	O que é GitHub Pages?
	O que é GitHub Actions?
	Integração entre GitHub Pages e GitHub Actions

	Assinaturas de Commits com chave GPG
	O que é?
	Importância das assinaturas GPG

	Como usar?
	Passo 1: Instalar o GPG
	Passo 2: Gerar uma chave GPG
	Passo 3: Listar chaves e copiar o ID da chave
	Passo 4: Configurar o Git para usar a chave GPG
	Passo 5: Adicionar a chave GPG ao GitHub
	Passo 6: Fazer commits assinados
	Passo 7: Verificar commits assinados

	Dicas de segurança e boas práticas

	Exercícios Práticos
	Git e GitHub-CLI
	Objetivo
	Passo a Passo Detalhado
	Problemas Comuns e Soluções

	Criar um repositório no GitHub via CLI
	Objetivo
	Pré-requisito
	Passo a Passo
	README.md
	O que é README.md
	Como Criar

	LICENSE
	Por que usar LICENSE
	Como Adicionar Licença MIT

	Clonando um repositório do GitHub
	Objetivo
	Passo a Passo

	Github Pages
	Objetivo
	Passo a Passo

	Github Actions
	Objetivo
	Passo a Passo
	Uso de [skip ci] no GitHub Actions

	Merge
	Objetivo
	Passo a Passo

	Pull Request
	Objetivo
	Passo a Passo

	Materiais de Apoio
	Checklist para Cada Exercício
	Comandos Úteis para Consulta
	Dicas para Boas Práticas

	Conclusão
	Referências
	Apêndices
	Comandos Git
	Comandos GitHub CLI
	Padrões de Commits

	Anexos
	Lista de Presença
	Listab de dos mebros presentes na capacitação

